Объяснение:
Функция задана формулой y = −4x + 1. Определите:
1) значение функции, если значение аргумента равно 10;
2) значение аргумента, при котором значение функции равно −7;
3) проходит ли график функции через точку В (9; -35).
1)y = −4x + 1
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у 5 1 -3
а)Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=10
у= -4*10+1= -39 при х=10 у= -39
б)Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у= -7
-7= -4х+1
4х=1+7
4х=8
х=2 у= -7 при х=2
в)Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
В (9; -35)
y = −4x + 1
-35= -4*9+1
-35= -36+1
-35= -35, проходит.
Известно, что функция y = f(x) имеет период T = 3.
Найти периоды разных функций.
От того, что вы прибавите или отнимите число от значения функции, ее период не изменится.
Просто график передвинется вверх или вниз по оси Oy. Поэтому:
1) y = f(x) + 5. Период T = 3
2) y = f(x) - 3. Период T = 3
От того, что вы умножите значение функции на число, изменится не период, а амплитуда, то есть максимальные и минимальные значения функции. Поэтому:
3) y = 2f(x). Период T = 3
И, наконец, от того, что вы поменяете знак функции, период тоже не поменяется. Просто график перевернется. Поэтому:
4) y = -f(x). Период T = 3
Чтобы период изменился, нужно умножать или делить x, а не f(x).
При умножении аргумента период уменьшается во столько же раз.
Например, y = f(3x) будет иметь период T = 3/3 = 1.
При делении аргумента период увеличивается во столько же раз.
Например, y = f(x/2) будет иметь период T = 3*2 = 6