ответ:Вступают в диалог с учителем.
Отвечают на его вопросы. Записывают выражение, для нахождения площади.
S=х*(20-х)
S= - х2+20х.
Учащиеся вспоминают, что если ветви параболы направлены вниз, то в вершине параболы функция принимает наибольшее значение.
х0=-20/(-2)=10
у0=-100+200=100.
Отвечают на вопрос учителя и делают вывод: Пахом, чтобы получить больше земли, должен был обойти квадрат со стороной 10 км и его площадь будет равна 100 км2.
Вступают в диалог с учителем. Предлагают варианты последовательности действий. Составляют алгоритм решения подобных задач
Объяснение:
Формулы сокращенного умножения
1.Квадрат суммы двух величин равен квадрату первой плюс удвоенное произведение первой на вторую плюс квадрат второй.
(a+b)2=a2+2ab+b2
2.Квадрат разности двух величин равен квадрату первой минус удвоенное произведение первой на вторую плюс квадрат второй.
(a-b)2=a2-2ab+b2
3.Произведение суммы двух величин на их разность равно разности их квадратов.
(a+b)(a-b)=a2-b2
4.Куб суммы двух величин равен кубу первой плюс утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй плюс куб второй.
(a+b)3=a3+3a2b+3ab2+b3
5.Куб разности двух величин равен кубу первой минус утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй минус куб второй.
(a-b)3=a3-3a2b+3ab2-b3
6. Произведение суммы двух величин на неполный квадрат разности равно сумме их кубов.
(a+b)(a2-ab+b2)=a3+b3
7. Произведение разности двух величин на неполный квадрат суммы равно разности их кубов.
(a-b)(a2+ab+b2)=a3-b3
Объяснение:
Пусть х км/ч - скорость второго пешехода. Скорость первого - (х+1)км/ч. Т.к. встретились пешеходы в 9 км от пункта А, путь первого составил 9 км, а путь второго - 10 км. Значит, второй пешеход провел в пути (10/х) часов, а первый (9/(х+1)+0,5) часов, полчаса из которых потратил на остановку.
Уравнение:
D = 81
x = 5 (км/ч) - скорость второго пешехода
6 км/ч - скорость первого