М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
мсоь
мсоь
16.07.2021 08:05 •  Алгебра

Найдите производную функции y=-cos3x+(4x+5)^2

👇
Ответ:
Lenkoo12
Lenkoo12
16.07.2021
У' = 3Sin3x +8(4x +5)
4,5(26 оценок)
Открыть все ответы
Ответ:
tyrone12
tyrone12
16.07.2021

Биквадратное уравнение.

Решается заменой переменной:

x^2=t

t^2+(3a+1)t+0,25=0

D=(3a+1)^2-4\cdot 0,25=9a^2+6a+1-1=9a^2+6a

Если  D >0,   т.е.

9a^2+6a0\\\\3a(3a+2) 0

a\in (-\infty; -\frac{2}{3})U(0;+\infty)

уравнение имеет корни:

t_{1}=\frac{-(3a+1)-\sqrt{9a^2+6a} }{2}     или   t_{2}=\frac{-(3a+1)+\sqrt{9a^2+6a} }{2}

Обратный переход:

x^2=\frac{-(3a+1)-\sqrt{9a^2+6a} }{2}      или     x^2=\frac{-(3a+1)+\sqrt{9a^2+6a} }{2}

Уравнение x^2=с  имеет корни, если c> 0, тогда корни противоположны по знаку

Чтобы корни данного уравнения были равны,

с=0

\frac{-(3a+1)-\sqrt{9a^2+6a} }{2}=0

\sqrt{ 9a^2+6a}=-(3a+1)

Это иррациональное уравнение.

При (3a+1) >0 оно не имеет корней.

При (3а+1) ≤0

возводим обе части уравнения в квадрат:

9a^2+6a=9a^2+6a+1

0=1 - неверно, нет таких значений а

Аналогично

\frac{-(3a+1)+\sqrt{9a^2+6a} }{2}=0

\sqrt{ 9a^2+6a}=(3a+1)

При (3a+1) < 0 оно не имеет корней.

При (3а+1) ≥0

возводим обе части уравнения в квадрат:

9a^2+6a=9a^2+6a+1

0=1 - неверно, нет таких значений а

Если   D=0, т.е   9a^2+6a=0

a=0    или      a=-\frac{2}{3}

При  a=0  

уравнение принимает вид:

x^4+x^2+0,25=0

D=1^2-4\cdot 0,25=0    ⇒  x^2=-1

уравнение не имеет корней

При  a=-\frac{2}{3}  

уравнение принимает вид:

x^4-x^2+0,25=0

D=1-4\cdot 0,25=0     ⇒     x^2=\frac{1}{2}

x=\pm\frac{\sqrt{2} }{2}

Уравнение 4-ой степени, значит

x_{1,2}=-\frac{\sqrt{2} }{2}   и   x_{3,4}=\frac{\sqrt{2} }{2}

О т в е т. При a=-\frac{2}{3}

4,8(82 оценок)
Ответ:
Sasci
Sasci
16.07.2021

Найти частное решение линейного неоднородного уравнения 2-го порядка.

Алгоритм решения неоднородного ДУ следующий:

1) Сначала нужно найти общее решение соответствующего однородного уравнения y``+y`-2y=0

Составим и решим характеристическое уравнение:

\displaystyle k^2+k-2=0\\\\D=1+8=9\\\\k_1=1; k_2=-2

получены различные действительные корни, поэтому общее решение:

\displaystyle y=C_1*e^{-2x}+C_2*e^{x}

2) Теперь нужно найти какое-либо частное решение  неоднородного уравнения

в правой части 4e²ˣ-2x+1. Значит предположу что частное решение неоднородного уравнения нужно искать в виде: y=Аe²ˣ+Bx+C

Найдём первую и вторую производную:

\displaystyle y`=(A*e^{2x}+Bx+C)`=2A*e^{2x}+B\\\\y``=(2A*e^{2x}+B)`=4A*e^{2x}

подставим в левую часть

\displaystyle y``+y`-2y=4A*e^{2x}+(2A*e^{2x}+B)-2(Ae^{2x}+Bx+C)=\\\\=4Ae^{2x}+2Ae^{2x}+B-2Ae^{2x}-2Bx-2C=\\\\=4Ae^{2x}-2Bx+(B-2C)

и теперь приравняем к правой

\displaystyle 4Ae^{2x}-2Bx+(B-2C)=4e^{2x}-2x+1

отсюда составим систему

\displaystyle \left \{ {{4A=4; -2B=-2} \atop {B-2C=1}} \right. \]\\\\A=1; B=1;C=0

3) Запишем общее решение неоднородного уравнения:

\displaystyle y=C_1e^{-2x}+C_2*e^{x}+e^{2x}+x

4) теперь найдем частное решение

y(0)=3; y`(0)=5

\displaystyle y(0)=C_1+C_2+1=3; C_1+C_2=2\\\\y`(0)=-2C_1+C_2+2=5; C_2-2C_1=3\\\\

решая систему получим

\displaystyle C_2=2-C_1\\\\2-C_1-2C_1=3; C_1=-\frac{1}{3}\\\\ C_2=\frac{7}{3}

\displaystyle y= -\frac{1}{3}e^{-2x}+\frac{7}{3}e^x+e^{2x}+x

4,5(89 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ