Решение данного уравнения основано на том, чтобы узнать, насколько хорошо усвоена теорема Виета. При этом надо учесть, что эта теорема относится только к тем уравнениям, где коэффициент перед Х²=1. Поэтому приводим уравнение к виду, показанном во втором действии. Напомним теорему Виета. Х1+Х2= -b; Х1×Х2=с где b-это коэффициент перед Х, а с- известное нам число. Но в решении я указала эти значения со штрихом, чтобы не спутать с заданными в уравнении. Ну а дальше думаю по решению будет ясно, просто для начала находим а, а потом подставив находим и б. Возникнут вопросы или что-то неясное - обращайтесь. Удачи!
F(x) = 1,3x - 3,9 1) выясним сначала при каких значениях аргумента f(x)=0, т.е. 1,3x - 3,9 = 0 1,3x = 3,9 | : 1,3 x = 32) при каких значениях аргумента f(x) < 0 ? 1,3x - 3,9 < 0 x < 3 3) при каких значениях аргумента f(x) > 0 ? 1,3x - 3,9 > 0 x > 3 т.к. угловой коэффициент (это коэффициент при х) данной линейной функции положителен , значит функция возрастающая. ответ: f(x)=0 при x = 3; f(x) < 0 при x < 3; f(x) > 0 при x > 3; функция возрастающая.
г) (z^3-3z^2)+(z-3)=z^2(z-3)+(z-3)=(z-3)(z^2+1)