3.
y = -x^2 + 4x + 5
Решаем через дискриминант.
D = b^2 - 4ac = 16 - 4 * (-1) * 5 = 16 + 20 = 36
x1 = (-b - sqrt(D)) / 2a = (- 4 - 6) / 2 = -5
x2 = (-b + sqrt(D)) / 2a = (- 4 + 6) / 2 = 1
Проверка: 25 - 20 + 5 = 1 + 4 + 5 = 10.
4.
x - y = 3
x^2 - xy - 2y^2 = 7
Здесь можно выразить х через у, используя первое выражение.
х = у + 3
Подставляем его во второе выражение:
(y + 3)^2 - (y + 3) * y - 2y^2 = 7
(y + 3)^2 = y^2 + 6y + 9 - по формуле сокращенного умножения
(y + 3) * y = y^2 + 3y
y^2 + 6y + 9 - y^2 - 3y - 2y^2 = 7
3y + 9 - 2y^2 = 7
-2y^2 + 3y + 9 = 7 - приводим к нулю
-2y^2 + 3y + 2 = 0 - теперь у нас квадратичное уравнение, решаем как всегда.
D = b^2 - 4ac = 9 - (-16) = 25
y1 = (-b - sqrt(D)) / 2a = (-3 - 5) / -4 = 2
y2 = (-b + sqrt(D)) / 2a = (-3 + 5) / -4 = -0,5
Подставляем к значениям х:
х1 - 2 = 3
x1 = 5
Проверяем по второму выражению:
25 - 10 - 8 = 7
x2 - (-0,5) = 3
x2 = 2,5
Проверяем по второму выражению:
6.25 + 1.25 - 0.5 = 7
В обоих случаях все сошлось.
ответ: х1 = 5, у1 = 2; х2 = 2,5, у2 = -0,5.
7x²-x-8=0
Сначала решим уравнение через дискриминант.
D=b²-4ac
В данном уравнении: a=7; b=-1; c=-8. Подставляем.
D=(-1)²-4*7*(-8)=1+224=225=15²
Найдём корни по формуле
x=(-b±√D):2a=(-(-1)±15):2*7=(1±15):14
Получаем
x₁=(1-15):14=-14:14=-1
x₂=(1+15):14=16/14=8/7=1 1/7
Есть такая формула для разложения квадратного трёхчлена на множители: ax²+bx+c=a(x-x₁)(x-x₂)
Нам известны корни, подставим их, а также значение A.
7(x+1)(x-1 1/7)
Внесём 7 во вторую скобку, чтобы избавиться от дроби.
7(x+1)(x-8/7)=(x+1)(7x-8)
ответ: 7x²-x-8=(x+1)(7x-8)