М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
artemonimus
artemonimus
11.12.2022 11:00 •  Алгебра

Tg(a+b) если sina=12/13 cosb=3/5 a,b принадлежит первой четверти

👇
Ответ:
nozim21tx
nozim21tx
11.12.2022
Cos(a) = V(1 - (12/13)^2 ) = V(13^2 - 12^2) /13 = 5/13,
sin(B) = V(1 - (3/5)^2) = V(5^2 - 3^2) /5 = V(2*8) /5 = 4/5,
tg(a+B) = sin(a+B)/cos(a+B) =
= ( sin(a)*cos(B) + sin(B)*cos(a) )/( cos(a)*cos(B) - sin(a)*sin(B) ) = 
= ( (12/13)*(3/5) + (4/5)*(5/13) )/( (5/13)*(3/5) - (12/13)*(4/5) ) = 
 = ( 12*3 + 4*5 )/( 5*3 - 12*4) = (36+20)/(15 - 48) = 56/(-33) = -56/33.
4,8(66 оценок)
Открыть все ответы
Ответ:
miku1368
miku1368
11.12.2022

Дана функция у = (х-1)²/x².

1.Область определения функции. D ∈ R : x ≈ 0.

2. Нули функции. Точки пересечения графика функции с осью ОХ.

График функции пересекает ось X при f = 0.

Значит, надо решить уравнение (х-1)²/x² = 0.

Решаем это уравнение (достаточно приравнять нулю числитель):

(х-1)² = 0, х-1 = 0, х = 1.

Точки пересечения с осью X: (1; 0).

График пересекает ось Y, когда x равняется 0.

Подставляем x = 0 в (x - 1)²/x².

Результат: (0 - 1)²/0² невыполним, значит, график не пересекает ось Оу.

3. Промежутки знакопостоянства функции.

Так как переменная в числителе и знаменателе в квадрате, то функция на всей числовой оси только положительна.

4. Симметрия графика (чётность или нечётность функции).

f(-x) = ((-x) - 1)²/((-x)²) = (x + 1)²/x² ≠ f(x) ≠ -f(-x).

Поэтому функция не чётная и не нечётная.

5. Периодичность графика. Не периодична.

6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - смотри приложение.

7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.

Первая производная: y' = (1/x²)*(2x - 2) - (2/x³)*(x - 1)²

или y' = (2x - 2)/x³.

Находим нули функции. Для этого приравниваем производную к нулю

(достаточно числитель): 2x-2 = 0

Откуда: x1 = 2/2 = 1.

(-∞ ;0) (0; 1) (1; +∞)

f'(x) > 0 f'(x) < 0 f'(x) > 0

функция возрастает функция убывает функция возрастает.

В окрестности точки x = 1 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1 - точка минимума.

8. Интервалы выпуклости, точки перегиба.

Найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции:

\frac{d^{2}}{d x^{2}} f{\left (x \right )} =

Вторая производная

\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right) = 0

Решаем это уравнение

Корни этого ур-ния

x_{1} = \frac{3}{2}

Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:

Точки, где есть неопределённость:

x_{1} = 0.

\lim_{x \to 0^-}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.

\lim_{x \to 0^+}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.

- пределы равны, значит, пропускаем соответствующую точку.

Интервалы выпуклости и вогнутости:

Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

Вогнутая на промежутках

(-oo, 3/2]

Выпуклая на промежутках

[3/2, oo)

9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - смотри приложение.

10. Дополнительные точки, позволяющие более точно построить график - даны в приложении.

11. Построение графика функции по проведенному исследованию дан в приложении.

4,7(82 оценок)
Ответ:
olgaolgahelga
olgaolgahelga
11.12.2022

В планиметрии все фигуры, которые рассматривались при доказательстве каждой теоремы или при решении задач, располагались на плоскости (на листе бумаги или на доске и т. д.). Таким образом, мы имели дело только с одной плоскостью, и все точки, линии, углы, вообще геометрические фигуры лежали только на ней.

В курсе стереометрии нам предстоит рассматривать такие случаи, когда не все точки, линии и углы данной или данных фигур будут располагаться на одной плоскости. Будем считать, например, поверхность стола моделью плоскости Р; возьмем куб и поставим его одной гранью на стол. Легко видеть, что в данном кубе:

1) имеются точки, ребра, углы, лежащие на данной плоскости Р (на столе);

2) имеются точки, которые находятся вне плоскости Р;

3) имеются ребра, пересекающие плоскость Р;

4) имеются углы, находящиеся вне плоскости Р;

5) имеются шесть граней, являющиеся моделями шести различных плоскостей.

Вывод. Плоскости могут вступать во взаимодействие с другими элементами фигур и друг с другом.

Отсюда вытекает необходимость изучать различные случаи комбинаций плоскостей между собой, комбинации плоскостей с линиями и другими геометрическими объектами. Это изучение является одной из задач курса стереометрии. В первую очередь надо выяснить основные свойства плоскостей по отношению друг к другу, к точкам и прямым.

Введем обозначения:

точки – А, В, С и т. д.

прямые – a, b, с и т. д. или (АВ, СD и т. д.)

плоскости – α, β, γ и т. д.

4,6(31 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ