Сначала выразим tg(3a) через tg(a) Получили Мы знаем, что tg(a) - целое. Если tg(3a) тоже целое, то 3-tg^2(a) делится нацело на 1-3tg^2(a).
Ясно, что при tg a = 0 будет tg 3a = 0 Далее, например, при tg(a) = 1 получаем tg(3a) = 1*(3 - 1)/(1 - 3)= 1*2/(-2) = -1 А при tg(a) = -1 получаем tg(3a) = -1*(3 - 1)/(1 - 3) = (-1)*2/(-2) = 1 Но уже при tg(a) = 2 мы получаем tg(3a) = 2*(3 - 4)/(1 - 3*4) = 2*(-1)/(-11) = 2/11 Соответственно, при tg(a) = -2 мы получим tg(3a) = -2/11. Это уже нецелые значения, и ни при каких других а целых не будет. ответ: (0; 0); (1; -1); (-1; 1)
2*sinx*cosx = sinх - 2cosx + 1.
Перенесём 2cosx влево:
2*sinx*cosx + 2cosx = sinх + 1.
2*cosx (sinx + 1) = sinх + 1.
Разделим на sinх + 1:
2*cosx = 1.
cosx = 1/2.
х₁ = -(π/3) + 2πk
x₂ = (π/3) + 2πk, k ∈ Z.
Из полученных корней только 2 находятся на заданном отрезке при к = 1.
ответ: х₁ = -(π/3) + 2π*1 = 5π/3,
x₂ = (π/3) + 2π*1 = 7π/3.