Если у трехзначного числа на первом месте стоит цифра 3, то две другие цифры – произвольные, отличные от 3. Значит, на втором месте может стоять любая из 9 других цифр, и на третьем – любая из 9 других цифр – всего 9х9 = 81 вариант. Если тройка стоит на втором месте, то на первом месте может стоять любая цифра, кроме 3 и 0, а на последнем – любая, кроме тройки. Всего получается 8х9 = 72 варианта. Столько же вариантов мы получим, если тройка будет стоять на последнем месте. Итого: 81 + 72 + 72 = 225 вариантов.
Если у трехзначного числа на первом месте стоит цифра 3, то две другие цифры – произвольные, отличные от 3. Значит, на втором месте может стоять любая из 9 других цифр, и на третьем – любая из 9 других цифр – всего 9х9 = 81 вариант. Если тройка стоит на втором месте, то на первом месте может стоять любая цифра, кроме 3 и 0, а на последнем – любая, кроме тройки. Всего получается 8х9 = 72 варианта. Столько же вариантов мы получим, если тройка будет стоять на последнем месте. Итого: 81 + 72 + 72 = 225 вариантов.
4 = 2 + 2
6 = 3 + 3
8 = 3 + 5
10 = 3 + 7 = 5 + 5
12 = 5 + 7
14 = 7 + 7 = 11 + 3
16 = 11 + 5 = 13 + 3
В общем случае Проблема Гольдбаха, именно так называвается приведенное вами утверждение, похоже, ещё не решена