№1.
№2.
ответ:
№3.
а)
f(x) = 19-2x; D(f) = (-∞;+∞)
б)
g(x) = x+1; D(g) = (-∞;+∞)
в)
y(x) = √x; D(y) = [0;+∞)
г)
y = x²-4; D(y) = (-∞;+∞)
Область определения линейных функций (пункты а и б) и квадратных (пункт г) ничто не ограничивает. А вот для квадратного корня есть ограничения - подкоренное выражение не может быть отрицательным (в пункте в) x ≥ 0).
№4.
а)
y = 37x+1; E(y)=(-∞;+∞)
б)
y = -23; E(y) = -23
в)
y = x; E(y) = (-∞;+∞)
г)
y = |x|; E(y) = [0;+∞)
Для линейной функция вида y=kx+b, k≠0, множество значений все действительные числа (пункты а и в). Для линейной функции вида y=b, b - константа, множество значений и есть число b, оно неизменно (пункт б). Множество значений модуля, все неотрицательные числа (пункт г).
ответы на вопросы:
1. Графиком квадратичной функции является парабола.
2. Привести функцию к виду f(x) = ax²+bx+c, абсцисса вершины: , ордината вершины: y₀ = f(x₀) - надо подставить значение x₀ в квадратичную функцию.
3. Направление ветвей зависит от старшего коэффициента.
Если a<0, то ветви направлены вниз;
Если a>0, то ветви направлены вверх.
4. Да, любая парабола имеет ось симметрии, для графика функции y=ax²+bx+c, ось симметрии будет
5. Определяем координаты вершины парабола и направление ветвей. Если вершина ниже оси Ox, а ветви направлены вниз ИЛИ вершина выше оси Ox, а ветви направлены вверх, то искать нули функции (x, при которых график функции пересекает ось Ox) не надо. В остальных двух случаях, находим нули функции.
Составляем таблицу точек, для таких x, что не очень далеко от абсциссы вершины. И заодно находим координаты точки пересечения графика с осью Oy (x=0).
Отмечаем точки из таблицы и вершину на координатной плоскости и проводим параболы, подписываем координаты точек пересечения графика с ось Ox.
30%=30/100=0,3
70%=70/100=0,7
Пусть сотрудникам второго предприятия выплачено х руб., тогда сотрудникам 3-го предприятия выплачено 0,7 х руб. Сотрудникам первого предприятия выплачено 30% от премии третьего предприятия, т.е 0,3*0,7х=0,21х руб.
Согласно условию, сотрудникам второго предприятия выплачено на 120 000 руб. меньше, чем сотрудникам второго предприятия. Тогда имеем уравнение:х-0,7х= 120 000
0,3 х= 120 000 ; х=120000/0,3 ; х=400 000.
Общая выплата премии составила 0,21 х+х+0,7х=1,91 х
1,91*400 000 =764 000 руб.
ответ в тысячах 764.