Первое задание:
1)3х^2 - х^3.
2•3х-3х^2
6х-3х^2
2) 4х^2+6х+3
2•4х+6
8х+6
3) Есть два решения:
(3х^2+1)(3х^2-1).
Расписываем по формуле умножения:
(3х^2+1)’(3х^2-1)+(3х^2+1)(3х^2-1)’
Берём производную:
(2•3х)(3х^2-1)+(3х^2+1)(2•3х)
(6х)(3х^2-1)+(3х^2+1)(6х)
(18х^3 - 6х)+(18х^3 + 6х)
18х^3-6х+18х^3+6х
18х^3+18х^3
36х^3
Второй вариант - изначально увидеть формулу умножения и упростить. Но ответ одинаковый.
4) Очень не удобно через телефон, ибо деление. Если никто не решит - скажешь отправлю фотку решения.
Второе задание:
у = 1-6х^3
у’ = -3•6х^2
у’= -18х^2
у’(х0) = -18•8^2 = -1152
Третье задание:
s(t) = 2,5t^2+1,5t
s(t)’ = V(t)
s(t)’ = 2•2,5t+1,5
s(t)’ = 5t+1,5
V(t)=5t+1,5
V(4)=5•4+1,5=21,5.
ответ: 21,5.
Четвёртое задание так же по формуле деления, с телефона не удобно, по этому если никто не решит - напишешь
1
(x+3)^2 * (x-2) < 0
произведение меньше 0, если множители имеют разные знаки + и -
множитель (x+3)^2 = 0 =>(x+3)^2 * (x-2) = 0 если х= -3
исключаем х= -3 , так как по условию произведение меньше 0
при любых остальных х множитель (x+3)^2 - имеет положительное значение
значит множитель (x-2) должен иметь отрицательное значение
(x-2) < 0 при х < 2 , кроме х= -3
ответ x Є (-∞; -3) U (-3; 2)
2
1\ √(5x-2)
имеет смысл, если подкоренное выражение положительное значение или 0
5x-2 ≥ 0 ; x ≥ 2/5
x =2/5 придется исключить, т.к. на 0 делить нельзя
ответ x Є (2/5; +∞)
3
√ (x^2+6x )
имеет смысл, если подкоренное выражение положительное значение или 0
x^2+6x ≥ 0 ; x *(x+6) ≥ 0
произведение ,больше 0, если множители имеют одинаковые знаки + и -
произведение ,равно 0, если один из множителей равен 0
тогда
{ x ≥ 0
{ (x+6) ≥ 0 ; x ≥ -6
решение системы x ≥ 0
или
{ x ≤ 0
{ (x+6) ≤ 0 ; x ≤ - 6
решение системы x ≤ -6
ответ x Є (-∞; -6] U [0; +∞)