В решении.
Объяснение:
а) 0,6х²у * ? = -3х⁴у
? = - 3х⁴у / 0,6х²у =
3 и 0,6 сократить (разделить) на 0,6; х⁴ и х² на х²; у и у на у:
= - 5х²;
б) ? * (-4ху²) = 8,2х³у³
? = 8,2х³у³ / (-4ху²)=
сократить (разделить) 8,2 и 4 на 4; х³ и х на х; у³ и у² на у²:
= -2,05х²у;
в) -5ху * ? = 0,8х²у³
? = 0,8х²у³ / (-5ху)=
сократить (разделить) 0,8 и 5 на 5; х² и х на х; у³ и у на у:
= -0,16ху².
Проверка путём подстановки вычисленных значений неизвестной величины в выражения показала, что данные решения удовлетворяют данным выражениям.
/ - знак деления.
Докажем методом математической индукции.
Пусть дано четное n = 2m, тогда требуется доказать, что
(17^(2m) - 1) делится нацело на 96.
17^(2m) - 1 = (17^2)^m - 1 = 289^m - 1.
Докажем, что (289^m - 1) делится нацело на 96, при любом натуральном m.
1) База индукции: при m=1 имеем 289¹ - 1 = 288 = 3·96 делится нацело на 96.
2) Предположение индукции.
Предположим, что для всех натуральных k≤m 289^k - 1 делится нацело на 96, то есть, 289^k - 1 = 96·A, где А - целое число.
Тогда докажем, что для 289^(k+1) - 1 делится нацело на 96.
3) Индуктивный переход.
289^(k+1) - 1 = 289·289^k - 1 = 289·(289^k - 1 + 1) - 1 =
= 289·(289^k - 1) + 289 - 1 = 289·(289^k - 1) + 288 = W,
т.к. по предположению индукции 289^k - 1 = 96·A, то имеем
W = 289·96·A + 3·96 = 96·( 289·A + 3) и т.к. A - целое, то и (289·A + 3) - тоже целое и 289^(k+1) - 1 делится нацело на 96. Ч.Т.Д.
Nado uznat ešče v.
Rozdelim /AD/ = x + 7+(x-5)=12
P,Q točki na AD, DP=x, pQ=7,qA= x-5
Iz CDP: 8ˇ2=xˇ2+vˇ2, iz BQA:6ˇ2=(x-5)ˇ2+vˇ2
v=V(8ˇ2-xˇ2)=V(64-xˇ2)
v=V(6ˇ2-(x-5)ˇ2)=
64-xˇ2 = 36-xˇ2+10x-25
64=11+10x, 10x=53, x=5,3
v=V(64-5,3ˇ2)=V(64-28,09)=V(35,91)=(priblizitelno) 5 cm
S=(12+7).5/2=19.5/2=95/2=47,5 cmˇ2