М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
RusskikhDaria
RusskikhDaria
09.06.2023 13:39 •  Алгебра

Помните , ! 3)(2b-3)³-4b²(2b-6)+6b(2b-9)=-274)(b+2)³+(2b+1)³-9b(b²+2b+2)-10=-1​

👇
Ответ:
genek711
genek711
09.06.2023

Смотрите на фото. Там есть ответ. Надеюсь правильно.


Помните , ! 3)(2b-3)³-4b²(2b-6)+6b(2b-9)=-274)(b+2)³+(2b+1)³-9b(b²+2b+2)-10=-1​
4,8(2 оценок)
Открыть все ответы
Ответ:
roma9jko
roma9jko
09.06.2023
№1 а) 5x-8.5=0                 б)8x-7.5=6x+1.5
5x=0+8.5                            8x-6x=1.5+7.5
5x=8.5                                2x=9
x=8.5/5                                x=9/2
x=1,7                                  x=4.5

в)4x-(9x-6)=46                    г)(x-2.5)*(5+x)=0
4x-9x+6=46                          x-2.5*5+x=0
-5x=46-6                              2x=12.5
x=40/-5                                x=12.5/2
x=-8                                     x=6.25

д) 2х/5=(х-3)/2                    е) 7х-(х+3)=3(2х-1)
2x-x=-3/2*5                            нет корней
x=-7.5

№2 х*2+8=6х
2х-6х=-8
-4х=-8
х=-8/-4
х=2

№3
1) х+2х+х+80=3080
4х+80=3080
4х=3080-80
х=3000/4
х=750 ( уч) в первой школе
2)750+80=830 (уч) во второй школе
3)750*2=1500 ( уч) в третьей школе

№4 х+25=2х-16
х-2х=-16-25
х=41 (т) в первом магазине первоначально
41*2=82 (т) во втором магазине первончально
4,4(50 оценок)
Ответ:
LentaKuim
LentaKuim
09.06.2023
Дано: sinx-siny=m; cosx+cosy=n. Найти: sin(x-y) и cos(x-y).
Решение:
1. Воспользуемся формулами разность синусов и сумма косинусов:
sinx-siny=2sin \frac{x-y}{2}cos \frac{x+y}{2}=m; cosx+cosy=2cos \frac{x+y}{2}cos \frac{x-y}{2}=n.
Заметим, что оба равенства содержат один и тот же член: cos \frac{x+y}{2}. Выразим его из обоих равенств:
cos \frac{x+y}{2}= \frac{m}{2sin \frac{x-y}{2}};cos \frac{x+y}{2}= \frac{n}{2cos \frac{x-y}{2}}.
В получившихся равенствах левые части равны, значит, равны и правые части:
\frac{m}{2sin \frac{x-y}{2}}= \frac{n}{2cos \frac{x-y}{2}}.
Преобразуем данное равенство:
\frac{2sin \frac{x-y}{2}}{2cos \frac{x-y}{2}}= \frac{m}{n};
\frac{sin \frac{x-y}{2}}{cos \frac{x-y}{2}}= \frac{m}{n};
( \frac{sin \frac{x-y}{2}}{cos \frac{x-y}{2}})^{2}=( \frac{m}{n})^{2};
\frac{sin^{2} \frac{x-y}{2}}{cos^{2} \frac{x-y}{2}}= \frac{m^{2}}{n^{2}};
Теперь используем формулы понижения степени синуса и косинуса:
\frac{1-cos(x-y)}{2}: \frac{1+cos(x-y)}{2}= \frac{m^{2}}{n^{2}};
Преобразуем данное равенство:
\frac{1-cos(x-y)}{1+cos(x-y)}= \frac{m^{2}}{n^{2}};
n²(1-cos(x-y))=m²(1+cos(x-y));
n²-n²cos(x-y)=m²+m²cos(x-y);
m²cos(x-y)+n²cos(x-y)=n²-m²;
cos(x-y)(m²+n²)=n²-m²;
cos(x-y)= \frac{n^{2}-m^{2}}{m^{2}+n^{2}}.
Используя основное тригонометрическое тождество, выразим sin(x-y):
sin(x-y)= \sqrt{1-( \frac{n^{2}-m^{2}}{m^{2}+n^{2}})^{2}}.
ответ: sin(x-y)= \sqrt{1-( \frac{n^{2}-m^{2}}{m^{2}+n^{2}})^{2}};cos(x-y)= \frac{n^{2}-m^{2}}{m^{2}+n^{2}}.
4,5(35 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ