6х^2-3x =0 вынесем общий множитель за скобки: 1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0: 3х=0 или 2х-1=0 первый корень х=0 2х-1=0 2х=1 х=1/2 - второй корень. 2)25х^2=1 x^2=1/25 x=+- 5 3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4 4)4x^2+20x+1=0 D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня 5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный 6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2 7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.
если х - количество дней работы, то можно составить уравнение: (54+6)(х-1)=54*х+18 (54+6) - птому, что в день изготавливали на 6 деталей больше нормы (х-1) - потому, что они за день день до срока изготовили боьше нормы 54*х - сколько должны были изготовить при нормальной работе в срок +18 - т.к. изготовили на 18 деталей больше необходимого
получаем уравнение 54х-54+6х-6=54х+18 отсюда: 6х=18+54+6 отсюда х=13 ( т.к. они выполнили план за 1 день до срока, то кол-во дней равно х-1=12)
Также можно число х, принять кол-во дней, за которые рабочие управились, тогда уравнение будет иметь вид: (54+6)*х=54*(х+1)+18 решается аналогично
y=0.8x
тогда подставим y во второе уравнение
x+y=90
0.8x+x=90
1.8x=90
x=50
тогда y=0.8x=0.8*50=40
Oтвет: x=50; y=40