ответ:Сумма логарифмов с одинаковыми основаниями равна логарифму произведения выражений, стоящих под знаком логарифма. logc a + logc b = logc (a + b), a > 0, b > 0. log2 ((x - 2)(x - 3)) = 1; О. Д. З. {х - 2 > 0, х - 3 > 0; х > 3. Применим определение логарифма: Логарифмом числа а по основанию с logc a = b, называется такое число b, что выполняется равенство а = с^b. (х - 2)(х - 3) = 2^1; х^2 - 3х - 2х + 6 = 2; х^2 - 5х + 6 - 2 = 0; х^2 - 5х + 4 = 0; D = b^2 - 4ac; D = (-5)^2 - 4 * 1 * 4 = 25 - 16 = 9; √D = 3; x = (-b ± √D)/(2a); x1 = (5 + 3)/2 = 4; x2 = (5 - 3)/2 = 1 - посторонний корень, т.к. не принадлежит О. Д. З. Объяснение: ОТВЕТ. 4. ЕСЛИ ЧТО ТО НЕ ТАК НЕ БЛАКИРУЙТЕ АККАУНТ
Пусть т первый корень уравнения, тогда 2т второй корень уравнения. Подставив значения корней в уравнение ( т и 2т ) получаем систему 2х уравнений с неизвестными т и к. Решив ее, найдем значения первого корня и кожффициента к.
2т^2-кт+4=0 8т^2-2кт+4=0
-4т^2+2кт-8=0 8т^2-2кт+4=0
4т^2-4=0 2т^2-кт+4=0
т=1 или т= -1
Если т=1 то к=6, если т= -1 то к= -6.
Таким образом получили 2 случая:
1) при к=6 корни уравнения ( т и 2т ) равны 1 и 2
2) при к= -6 корни уравнения ( т и 2т ) равны -1 и -2