из условия 90⁰<t<180⁰ , 2 четверть.
sin t= √(1-(cos t)²)=4/5
tg t=sin t/ cos t= -4/3
ctg t*tg t=1
ctg=-3/4
Объяснение:
b₃=b₂+18; b₃=b₁q+18; b₃=b₁q²
b₃=b₁+9; b₃=b₁q²
Система уравнений:
b₁q+18=b₁q²; b₁q²-b₁q=18; b₁q(q-1)=18
b₁+9=b₁q²; b₁q²-b₁=9; b₁(q²-1)=9; b₁(q-1)(q+1)=9
(b₁q(q-1))/(b₁(q-1)(q+1))=18/9
q/(q+1)=2
q=2q+2
q-2q=2
q=-2 - знаменатель геометрической прогрессии.
b₁+9=b₁·(-2)²; b₁+9=4b₁; 9=4b₁-b₁; b₁=9/3=3 - 1-й член геометрической прогрессии.
b₃=3+9=12 - 3-й член геометрической прогрессии.
b₂=12-18=-6 - 2-й член геометрической прогрессии.
b₄=b₃q=12·(-2)=-24 - 4-й член геометрической прогрессии.
b₅=b₄q=-24·(-2)=48 - 5-й член геометрической прогрессии.
Объяснение:
b₃=b₂+18; b₃=b₁q+18; b₃=b₁q²
b₃=b₁+9; b₃=b₁q²
Система уравнений:
b₁q+18=b₁q²; b₁q²-b₁q=18; b₁q(q-1)=18
b₁+9=b₁q²; b₁q²-b₁=9; b₁(q²-1)=9; b₁(q-1)(q+1)=9
(b₁q(q-1))/(b₁(q-1)(q+1))=18/9
q/(q+1)=2
q=2q+2
q-2q=2
q=-2 - знаменатель геометрической прогрессии.
b₁+9=b₁·(-2)²; b₁+9=4b₁; 9=4b₁-b₁; b₁=9/3=3 - 1-й член геометрической прогрессии.
b₃=3+9=12 - 3-й член геометрической прогрессии.
b₂=12-18=-6 - 2-й член геометрической прогрессии.
b₄=b₃q=12·(-2)=-24 - 4-й член геометрической прогрессии.
b₅=b₄q=-24·(-2)=48 - 5-й член геометрической прогрессии.
Исходя с условия задачи угол во второй четверти, sin t= кор.кв. с(1-cos кв.t)=
=кор.кв. с (1- 9/25)= 4/5? tg t=4/5:(-3/5)=-4/3, ctg t=-3/4 - ф-я обратная к тангенсу.