ответ:
ответ: 2 км/ч.
объяснение:
решение:
пусть скорость плота х км/ч,учитываем,что скорость плота равна скорости течения реки,тогда по течению скорость лодки равна (8 + х) км/ч, а против течения (8 - х) км/ч.
составим уравнение:
15/(8+x)+ 6/(8-x)=5/x;
(120-15х+48+6х)/(64+х²)=5/x;
(168-9x)/(64+x²)-5/x=0;
(168x-9x²-320+5x²)/(64х+х³)=0;
168x-9x²-320+5x²=0;
-4x²+168x-320=0;
сокращаем на -4:
x²-42x+80=0;
d=b²-4×a×c
d=(-42²)-4×1×80 = 1764-320=1444
d> 0, 2 корня
х₁=42+√1444/2×1 =42+38/2=80/2=40 (км/ч)---не подходит(так как плот не может плыть быстрее лодки, значит х=40 не является решением);
х₂=42-√1444/2×1=42-38/2=4/2=2 -(км/ч)---скорость течения реки;
ответ: 2 км/ч.
y(x)= x^2-10x+30 - функция квадратичная с ветвями, направленными вверх( старший коэффициент >0).Решим квадратное
уравнение: x^2-10x+30=0; D= (-10)^2-4*1*30=-20. Видим, что дискриминант меньше нуля, поэтому парабола будет полностью лежать выше оси Х, не пересекая эту ось ни в одной точке, и все значения У параболы, соответственно, будут принимать положительные значения. Поэтому, неравенство x^2-10x+30<0
не имеет решений.
2) x^2+4x+5<0
y(x)=x^2+4x+5 - квадратичная функция, ветви параболы направлены вверх. Решим квадратное уравнение:
x^2+4x+5=0
D=4^2-4*1*5=-4. Дискриминант меньше нуля, поэтому неравенство
не имеет решений( также как и в первом случае).
3) 4x^2-9x+7<0
Решим уравнение: 4x^2-9x+7=0; D=(-9)^2-4*4*7=-31. Неравенство не имеет решений.