Пусть N = 740*p, где р - простое число. Тогда его делители: 1, 2, 4, 5, 10, 20, 37, 74, 148, 185, 370, 740, p, 2p, 4p, 5p, 10p, 20p, 37p, 74p, 148p, 185p, 370p. Делитель 740p мы не считаем. Нечетные делители: 1, 5, 37, 185, p, 5p, 37p, 185p. Четные делители:2, 4, 10, 20, 74, 148, 370, 740, 2p, 4p, 10p, 20p, 74p, 148p, 370p. Очевидно, что сумма четных больше, чем сумма нечетных. Если N = 740*2p, т.е. 740 умножается на четное число, то четных делителей будет еще больше. Даже если 740 умножается на несколько простых чисел: N = 740*p*q*r, все равно сумма четных делителей будет больше.
Сторона квадрата равна корень из его площади ( по формуле ) , значит его стороны по 4 см . Если расположить квадраты вдоль прямоугольника , чтобы они не касались друг друга , то длинна прямоугольника должна быть равна = 4+4+4 = 12 , а у нас длинна прямоугольника равна 10 . Если расположить квадраты в высоту ( по ширине прямоугольника ) , то ширина должна быть равна тоже 12 см ( чтобы квадраты не накладывались друг на друга ) , а у нас высота ( ширина ) = 4 см . Значит хотя бы 2 квадрата накладываются друг на друга :)
2m^2 y - 10my^3
или
2my ( m - 5y^2)