если b[1], b[2], b[3], .. - данная бесконечная убывающая геомметрическая прогрессия с знаменателем q, то
последовательность составленная из квадратов членов данной, тоже бессконечная убывающая c первым членом b[1] и знаменателем q^2
используя формулу суммы бесконечной убывающей прогрессии
b[1]/(1-q)=4
b[1]^2/(1-q^2)=48
откуда разделив соотвественно левые и правые части равенств, и используя формулу разности квадратов
b[1]^2/(1-q^2) :b[1]/(1-q)=48/4
b[1]/(1+q)=12
откуда
b[1]=12(1+q)=4(1-q)
12+12q=4-4q
12q+4q=4-12
16q=-8
q=-1/2
b[1]=4*(1-(-1/2))=4+2=6
a2 = 11
d = a2 - a1 = 11 - 5 = 6
S7 - ?
a7 - ?
a7 = a1 + 6d = 5 + 6*6 = 5 + 36 = 41
S7 = (a1 + a7)/2 * 7 = 3,5*(5 + 41) = 3,5*46 = 161