A) Т.к. корень >=0 для любого x, то для выполнения неравенства д.б. log_{2}(2x-3)<0 log_{2}(2x-3)<log_{2}(1) 2x-3<1 x<2 ОДЗ: x>=-3 и 2x-3>0 ⇒ x>3/2 пересекаем с одз: x∈(3/2;2) ответ: x∈(3/2;2) b) log_{x}(5)<log_{x}(x) 1) x>1 5<x x∈(5;+∞) 2) 0<x<1 5>x x∈(0;1) Объединяем 1) и 2) x∈(0;1)∪ (5;+∞) ответ: x∈(0;1)∪ (5;+∞)
1) Неопределённость 0/0 раскрываем умножением числителя и знаменателя на выражение, сопряжённое знаменателю, т.е. на В знаменателе разложение разности квадратом, используем это: Сокращаем:
2) Неопределённость (∞-∞) раскрываем, приводя к общему знаменателю: Сокращаем:
3) Неопределённость 0/0 раскрываем по первому замечательному пределу, вернее по одному из следствий из него, а именно: Знаменатель разложили на множители, затем по свойству предел произведения равен произведению пределов, разбили на 2 предела: Первый предел равен минус единице, второй приводим к первому замечательному пределу домножением на 5 числителя и знаменателя.
4) Неопределённость 1 в степени ∞ раскрывается с второго замечательного предела. Но сначала путём преобразований приведём к виду, когда его можно будет применить. В числителе добавили и вычли 1, затем сгруппировали и разделили. Потом поменяли знак второго слагаемого Сделаем замену t=1/(x-2), при этом t →0 и Отделим целочисленную степень (6): Разбили на произведение пределов, первый из которых равен 1, второй по второму замечательному пределу: Сначала можно вычислить предел, а затем возвести его в степень:
Пусть х - цифра, обозначающая десятки числа, у - цифра, обозначающая единицы числа, тогда: х + у → сумма цифр числа само число можно записать в виде: 10х + у число в обратном порядке: 10у + х
Составляем систему по условию: {x + y = 10 {10y + x + 1 = 2(10х + у)
{y = 10 - х {10y + x + 1 = 20х + 2у
{y = 10 - х {10y - 2у + x - 20х = -1
{y = 10 - х {8y - 19х = -1 Из верхнего уравнения: у = 10 - х Подставляем в нижнее: 8(10-х) - 19х = -1 80 - 8х - 19х = -1 -27х = -1 - 80 -27х = -81 27х = 81 х = 81/27 х = 3 → десятки числа
log_{2}(2x-3)<0
log_{2}(2x-3)<log_{2}(1)
2x-3<1
x<2
ОДЗ: x>=-3 и 2x-3>0 ⇒ x>3/2
пересекаем с одз:
x∈(3/2;2)
ответ: x∈(3/2;2)
b) log_{x}(5)<log_{x}(x)
1) x>1
5<x
x∈(5;+∞)
2) 0<x<1
5>x
x∈(0;1)
Объединяем 1) и 2)
x∈(0;1)∪ (5;+∞)
ответ: x∈(0;1)∪ (5;+∞)
с) log_{(2x-1)/3}(2)<log_{(2x-1)/3}(1)
1) (2x-1)/3>1 ⇒ x>2
2<1 ⇒ x∈∅
нет решений
2) 0<(2x-1)/3<1 ⇒ 1/2<x<2
2>1 ⇒ x∈(-∞;+∞)
1/2<x<2
Объединяем 1) и 2)
x∈(1/2;2)
ответ:x∈(1/2;2)