1) x(7 - x) > 0 Умножаем на -1, при этом меняется знак неравенства x(x - 7) < 0 По методу интервалов x ∈ (0; 7)
2) x^2*(3 - x)(x + 1) <= 0 Умножаем на -1, при этом меняется знак неравенства x^2*(x - 3)(x + 1) >= 0 x^2 > 0 при любом x =/= 0. Поэтому x = 0 - это решение. Делим на x^2 (x - 3)(x + 1) >= 0 По методу интервалов x ∈ (-oo; -1] U [3; +oo) Добавим решение x=0 и получим: x ∈ (-oo; -1] U [0] U [3; +oo)
1) В простейшем случае достаточно выбрать один центр и из него построить 24 дороги ко всем остальным деревням. Все деревни будут связаны друг с другом через центр. Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога, тогда рассуждаем так. Мы проводим от каждой из 25 деревень дороги ко всем 24. Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А. Значит, количество дорог надо разделить на 2. 25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6) Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно. Корни я нашел с Вольфрам Альфа.
с^2 это с во второй степени
Б) =7х+56+х^2-64=х^2+7х-8
Или
=7х+56+х^2-8х+8х-64=х^2+7х-8
В) =4х^2+20х-2х-5=4х^2-18х-5