1) 15,6-6x=0 -6x=-15,6 x= -15,6:(-6)=2,6 2) 2,3(4x-3)=6x-8,5 9,2x-6,9=6x-8,5 9,2x-6x=-8,5+6,9 3,2x=1,6 x=1,6:3,2=0,5 3)7-5b+3=6b+4 -5b-6b=4-10 -11b=-6 b=-6:(-11) =6/11 4)Пусть ученик изготовил х деталей, тогда мастер изготовил 6х деталей, вместе они изготовили 7х деталей, что равно42 7х=42 х= 42:7=6.Значит ученик изготовил 6 деталей, а мастер 36. 5)Пусть ширина прямоугольника равна х м, тогда длина равна х+3 м, периметр равен 2(х+х+3)=54 4х+6=54 4х=48 х=12. Ширина равна 12м, а длина 15 м, площадь равна 12*15=180 кв.м
То́ждество — это равенство, выполняющееся на всём множестве значений входящих в него переменных. Чтобы доказать тождество надо выполнить тождественные преобразования одной или обеих частей равенства, и получить слева и справа одинаковые выражения. Чтобы доказать, что равенство не является тождеством, достаточно найти одно допустимое значение переменной, при котором, получившиеся числовые выражения не будут равны друг другу.
1) ( -m-n)^2=(m-n)^2 m^2+2mn+n^2= m^2-2mn+n^2 - не тождественно равное выражение.
( -m-n)^2=(m+n)^2 m^2+2mn+n^2= m^2+2mn+n^2 -тождественно равное выражение
2) (-m+n)^2=(m-n)^2 m^2-2mn+n^2=m^2-2mn+n^2 - тождественно равное выражение
3x2 - x - 11 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-1)2 - 4·3·(-11) = 1 + 132 = 133
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 1 - √1332·3 ≈ -1.7554x2 = 1 + √1332·3 ≈ 2.0888