Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
Для того чтобы решить эту задачу, нужно определить, за какое время девочки вымоют окна, работая вместе:
1) Обозначим производительность труда Маши за х, Лены – за у, а Насти – за с, а всю работу возьмем за 1.
2) Тогда время на выполнение всей работы Маши и Насти: х + с = 1/20.
3) Производительность труда Насти и Лены: у + с = 1/15.
4) Производительность труда Лены и Маши: х + у = 1/12.
5) Теперь сложим данные уравнения и найдем общую производительность труда: 2х + 2у + 2с = 1/5; 2 * (х + у + с) = 1/5; х + у + с = 1/10.
6) Тогда вместе девочки выполнят всю роботу за 10 минут.
Поэтому наш ответ: 10 минут.
Cделаем замену x2 + 4x = t, тогда уравнение будет выглядеть следующим образом:
(t – 5)(t – 21) = 297.
Раскроем скобки, приведем подобные слагаемые:
t2 – 21t – 5t + 105 = 297;
t2 – 26t – 192 = 0.
По теореме Виета определяем, что корнями полученного уравнения будут числа -6 и 32.
После обратной замены будем иметь:
x2 + 4x = -6 или x2 + 4x = 32
x2 + 4x + 6 = 0 x2 + 4x – 32 = 0
D = 16 – 24 < 0 D = 16 + 128 > 0 ((x – 1)(x + 5))((x – 3)(x + 7)) = 297;
(x2 + 5x – x – 5)(x2 + 7x – 3x – 21) = 297;
(x2 + 4x – 5)(x2 + 4x – 21) = 29Нет корней x1 = -8; x2 = 4
Найдем произведение корней: -8 · 4 = -32.
ответ: -32.