Если меньшая сторона прямоугольника - х см, то из условия большая сторона на 4 см больше, то есть (х+4), а диагональ - на 8 см больше, то есть (х+8). Составляем уравнение исходя из теоремы Пифагора для прям. тр-ка, в котором гипотенуза - диагональ пр-ка, а катеты - его стороны: (х+8)²= х² + (х+4)² х² + 16х + 64 = х² + х² + 8х + 16 х² - 8х - 48 = 0 По теореме Виета корни: х₁ = -4 х₂ = 12 Первый корень не подходит по смыслу. Значит меньшая сторона пр-ка равна 12. Большая тогда равна 12+4 = 16 см. ответ: 12см; 16 см.
7 (2x + 16) = 30x
14x + 112 = 30x
16x = 112
x = 7