Объяснение:
составим систему уравнений
b(5)-b(3)=1200 (1)
b(5)-b(4)=1000 (2) ⇒ b(5)= 1000+b(4) (2_2)
Добавим в систему третье уравнение b(4)²=b(5)*b(3) (3)
вычтем из уравнения (1)-(2) ⇒ b(4)-b(3)=200 ⇒ b(3)=b(4)-200 (4)
Подставим (2_2) в (3)
b(4)²=(1000+b(4))*b(3) Подставим вместо b(3) уравнение (4)
b(4)²=(1000+b(4))*(b(4)-200)
b(4)²==1000b(4)+b(4)²-200000-200b(4) [b(4)² сократим]
800 b(4)=200000 b(4)=250
b(3)=250-200=50 b(3)=50
q=b(4)/b(3)=250/50=5 q=5
b(3)=b(1)*q² ⇒ b(1)=50/25=2 b(1)=2
S(5)= b(1)(q^n-1)/(q-1)
S(5)=3125
V(л) = 16,5 км/час - скорость лодки
V(р) - скорость реки
V(л) + V(р) - скорость лодки по течению реки
V(л) - V(р) - скорость лодки против течения реки
S - путь в один конец
Тогда время будет:
по течению:
t(1) = S / (V(л) + V(р)) = 2ч 20мин . = 2 1/3 часа = 7/3 часа
Отсюда
S = 7/3 * (V(л) + V(р))
по течению:
t(2) = S / (V(л) - V(р))= 2ч 20мин - 28 мин = 7/3 часа - 28/60 часа=7/3 - 7/15 часа = 35/15 - 7/15 = 28/15 часа
Отсюда
S = 28/15 * (V(л) - V(р))
приравнять S в обоих случаях и решить уравнения
sin(п/4)=cos(п/4) = (V2)/2.
sin((п/4) -x) = sin(п/4)*cos(x) - cos(п/4)*sin(x) = (V2/2)*cos(x) - (V2/2)*sin(x) = ((V2)/2)*(cos(x)-sin(x)).
cos((п/4)-x) = cos(п/4)*cos(x)+sin(п/4)*sin(x) = ((V2)/2)*(cos(x)+sin(x))
W = (cos(x)-sin(x))/(cos(x)+sin(x)) = [делим числитель и знаменатель на cos(x) ] = ( 1 - (sinx/cosx))/(1+(sinx/cosx)) = (1-tg(x))/(1+tg(x)) = -2;
1-tgx = (-2)*(1+tgx);
1-tgx = -2 - 2*tgx;
2tgx - tgx = -2-1;
tgx=-3.