д) (1,1; 1,8)
Объяснение:
Подберём интервал с возведения в квадрат, так как если
0 ≤ a < √3 < b то верно и
a² < 3 < b² (***).
а) (0; 1,1) ⇒ 0²=0 и 1,1²=1,21, не выполняется второе неравенство в (***);
б) (-0,2; 1,4) ⇒ (-0,2)²=0,04 и 1,4²=1,96, не выполняется второе неравенство в (***);
в) (1; 1,5) ⇒ 1²=1 и 1,5²=2,25, не выполняется второе неравенство в (***);
г) (0; 1,7) ⇒ 0²=0 и 1,7²=2,89, не выполняется второе неравенство в (***);
д) (1,1; 1,8) ⇒ 1,1²=1,21 и 1,8²=3,24, выполняются все неравенства в (***):
1,21 < 3 < 3,24.
В красной коробке: жёлтый и синий
В зелёной коробке: красный и жёлтый
В синей коробке: зелёный и зелёный
В жёлтой коробке: красный и синий
Объяснение
КК, ЗК, СК, ЖК - коробки. (КК - красная коробка, ЗК - зелёная коробка и т.д)
(к, к), (к, з), ... - всевозможные неупорядоченные пары шариков. Например (к, с) - красный и синий шарик.
Изобразим графически "функцию из множества коробок в множество пар шариков", лол.
Если пара шариков лежит в коробке, то будем проводить от коробки стрелку к этой паре шариков. Например, если (к, с) лежит в синей коробки, то это будет выглядеть так:
СК -> (к, с)
По условию, в одной из коробок лежит (к, ж). Ясно, что точно не в синей, потому что там лежат шарики одинакового цвета. В красной и желтой эта пара тоже находится не может, из за первого условия задачи. Значит эта пара лежит в зелёной коробке.
К ->
З -> (к, ж)
С -> (x, x); x - неизвестный пока цвет.
Ж ->
Добьём красные и жёлтые шары. У нас остался 1 жёлтый шарик и 1 красный. Запихнуть их в синюю коробку не получится, отсюда ясно, что жёлтый лежит в красной, а красный в жёлтой.
К -> (ж, _)
З -> (к, ж)
С -> (x, x)
Ж -> (к, _)
Синие шарики мы не можем положить в синюю коробку, из за условия 1, а значит будет так:
К -> (ж, с)
З -> (к, ж)
С -> (x, x)
Ж -> (к, с)
Тогда в синей коробке лежат зелёные шары.
К -> (ж, с)
З -> (к, ж)
С -> (з, з)
Ж -> (к, с)