Объяснение:
1. a₁=-2 a₁₀=16 a₁₂=?
a₁₀=a₁+(10-1)*d=16
-2+9*d=16
9*d=18 |÷9
d=2 ⇒
a₁₂=a₁+(12-1)*d=-2+11*2=-2+22=20
ответ: а₁₂=20.
2. a₇=43 a₁₅=3 a₁₂=?
{a₇=a₁+6d=43
{a₁₅=a₁+14d=3
Вычитаем из нижнего уравнения верхнее:
8d=-40 |÷8
d=-5 ⇒
a₁+6*(-5)=43
a₁-30=43
a₁=73
a₁₂=73+11*(-5)=73-55=18
ответ: a₁₂=18.
3. a₁=30 d=-0,4 a₁₂=?
a₁₂=30+11*(-0,4)=30-4,4=25,6
ответ: a₁₂=25,6.
4. a₁₀=9,5 S₁₀=50 a₁₂=?
Sn=(a₁+an)*n/2
(a₁+9,5)*10/2=50
(a₁+9,5)*5=50 |÷5
a₁+9,5=10
a₁=0,5
a₁₀=a₁+9d=9,5
0,5+9d=9,5
9d=9 |÷9
d=1 ⇒
a₁₂=a₁+11d=0,5+11*1=0,5+11=11,5.
ответ: а₁₂=11,5.
1. -1,4
2. Одночленом не является то выражение, части которого не разделяются плюсом или минусом (К примеру, 2abc будет одночленом, а ab + 2c не будет, в общем, ab + 2c будет многочленом), в данном случае ответом будет
3. Подобные слагаемые - те, которые имеют одну и ту же буквенную часть (Если одна буква возведена в одну степень, а другая в другую, они не будут подобными слагаемыми), при выполнении действий с ними, коэффициенты (Числа перед буквами) слагаются/вычисляются, в данном случае ответом будет 3a + 4b
4. При умножении одинаковых переменных степени слагаются, т.е., в данном случае будет =
5. , как решать, я уже объяснял
6. 4y + 5 (8y - (4y - 5) = 8y - 4y + 5, так как перед скобкой стоит минус, остальное я уже объяснял)
7. 16, так как, если после скобок стоит степень, степени внутри скобок умножаются на степень после скобок
8. 12x - 14 (Просто число перед скобками умножается на числа внутри скобок)
9. (В конце степени просто сокращаются, и остается только 3)
10. (Коэффициенты сокращаются, и в итоге остается
, что равно 4, а результат положительный, так как отрицательное число, умноженное на отрицательное, становится положительным)
36(x-1)^4 - 13x^2 + 26x - 12 = 0
36(x^4 - 4x^3 + 6x^2 - 4x + 1) - 13x^2 + 26x - 12 = 0
36x^4 - 144x^3 + 216x^2 - 144x + 36 - 13x^2 + 26x - 12 = 0
36x^4 - 144x^3 + 203x^2 - 118x + 24 = 0
Разложим так
36x^4 - 18x^3 - 126x^3 + 63x^2 + 140x^2 - 70x - 48x + 24 = 0
18x^3*(2x-1) - 63x^2*(2x-1) + 70x*(2x-1) - 24*(2x-1) = 0
(2x-1)(18x^3 - 63x^2 + 70x - 24) = 0
x1 = 1/2
Теперь разложим кубическое уравнение
18x^3 - 12x^2 - 51x^2 + 34x + 36x - 24 = 0
6x^2*(3x-2) - 17x*(3x-2) + 12(3x-2) = 0
(3x-2)(6x^2 - 17x + 12) = 0
x2 = 2/3
И, наконец, решаем квадратное уравнение
D = 17^2 - 4*6*12 = 289 - 288 = 1
x3 = (17 - 1)/12 = 16/12 = 4/3
x4 = (17 + 1)/12 = 18/12 = 3/2
ответ: 1/2; 2/3; 4/3; 3/2