Так как члены представляют собой арифметическую прогрессию, то a2=a1+d, a5=a1+4d, где d - знаменатель арифметической прогрессии. Но так как эти же члены являются членами геометрической прогрессии, то a2=a1*q и a5=a1*q², где q - знаменатель геометрической прогрессии. По условию, a2+1=a1+1+d1, a5-3=a1+1+2d1, или a2=a1+d1, a5=a1+4+2d1. Из первого уравнения находим d1=d. Так как a5=a1+4d, то из второго уравнения следует уравнение 4d=4+2d, откуда d=2. Теперь, заменяя a2 на a1+2 и a5 на a1+8, получаем уравнения a1+2=a1*q, a1+8=a1*q². Из первого уравнения следует a1=2/(q-1). Подставляя это выражение во второе уравнение, приходим к квадратному уравнению q²-4q+3=0. Дискриминант D=(-4)²-4*1*3=4=2². Отсюда q=(4+2)/2=3 либо q=(4-2)/2=1. Но если q=1, то все члены геометрической прогрессии, а с ней и все члены исходной арифметической прогрессии, были бы равны, что было бы возможно лишь при d=0. Но так как d=2≠0, то q≠1. Значит, q=3. Тогда a1=2/(3-1)=1, и искомая сумма S100=100*(a1+a100)/2=50*(a1+a100). Но a100=a1+99d=1+99*2=199, и тогда S100=50*(1+199)=10 000. ответ: 10 000.
1-весь заказ 1/х - работа за час 1-й компании 1/(х+9) - работа за час второй компании 1/х+1/(х+9) = 1\20 - ПЕРЕНЕСЕМ 1\20 В ЛЕВУЮ ЧАСТЬ 1/х+1/(х+9) - 1\20 = 0 ПРИВЕДЕМ ВСЕ ОДНОЧЛЕНЫ К ОБЩЕМУ ЗНАМЕНАТЕЛЮ 1/х + 1/(х+9) - 1\20 / 20*х(х+9) = 0 домножим обе части на знаменатель,т.е. избавимся от него. Получим это уравнение 20х+180+20х-х²-9х = 0 -х²+31х+180= 0 D = 961+720 = 1681 (41) x1 = (-31+41):(-2) <0 - не подходит по смыслу. х2 = (-31-41):(-2) = 36 (часов надо 1 бригаде) 36+9 = 45 ответ за 45 часов выполнит работу 2 бригада.
a(a^4 -4a^3 +5a^2 +a -3) =0
a(a-1)(a^3 - 3a^2 +2a+3) =0
a = 0 a = 1
Если в уравнение подставить 2 , то 32 -64+40+4-6= 6, 2 не является корнем уравнения