1.
а) 3b+(5a–7b) = 3b+5a–7b = 5a–4b
б) –(8c–4) +4 = –8c+4+4 = 8–8c
в) (2+3x) +(7x–2) = 2+3x+7x–2 = 10x
г) 3(8m–4)+6m = 3×8m–3×4+6m=24m–12+6m=30m–12
д) 15–5(1–a)–6a = 15–5–5a–6a= 10–11a
е) (2a–7y)–(5a–7) = 2a–7y–5a+7 = –3a–7y±7
ж) 14b–(15b+y)–(y+10b) = 14b–15b–y–y–10b = –11b–2y
з) 7(5a+8)–11a–58 = 7×5a+7×8–11a–58 = 35a+56–11a–58 = 24a–2
и) 9x+3(15–8x)–35 = 9x+3×15–3×8x–35 = 9x+45–24x–35 = 10–15x
к) 33–8(11b–1) –2b = 33–8×11b–8–2b = 33–88b–8–2b = 25–90b
2.
а) 0,7b+0,3(b–5) = 0,7b+0,3b–0,3×5 = b–1,5 = –0,81–1,5 = –2,31
б) (y–7)–(14–y) = y–7–14+y = 2y–21 = –0,6–21= –21,6
Объяснение:
Алгебра мой конёк)
Надеюсь
1. С графика квадратичной функции.
x² + 3x - 18 < 0.
Рассмотрим функцию у = х² + 3х - 18. Графиком этой функции является парабола, ветви которой направлены вверх.
Выясним, как расположена эта парабола относительно оси Ох. Для этого решим уравнение х² + 3х - 18 =0:
D = 3² - 4 · 1 · (-18) = 9 + 72 = 81; √81 = 9
х₁ = (-3 + 9)/(2 · 1) = 6/2 = 3,
х₂ = (-3 - 9)/(2 · 1) = -12/2 = -6.
Значит, парабола пересекает ось Ох в двух точках, абсциссы которых равны -6 и 3.
Покажем схематически, как расположена парабола в координатной плоскости (см. рис.) Из рисунка видно, что функция принимает отрицательные значения, когда х∈(-6; 3). Следовательно, множеством решений неравенства x² + 3x - 18 < 0 является промежуток (-6; 3).
2. Методом интервалов.
Метод интервалов применяется в случае, когда левая часть нервенства имеет многочлена, а правая равна 0. В этом случае находят корни многочлена, располагают их в порядке возрастания, наносят их на числовую ось, а затем справа налево располагают знаки "+" и "-", чередуя их, если корень некратный, и сохраняя знак, если корень кратный.
x² + 3x - 18 < 0
Разложим на множители многочлен x² + 3x - 18, для чего решим квадратное уравнение x² + 3x - 18 = 0:
D = 3² - 4 · 1 · (-18) = 9 + 72 = 81; √81 = 9
х₁ = (-3 + 9)/(2 · 1) = 6/2 = 3,
х₂ = (-3 - 9)/(2 · 1) = -12/2 = -6.
Значит, x² + 3x - 18 = (х - 3)(х + 6).
Отметим на координатной прямой точки -6 и 3 и укажем знаки многочлена на каждом из полученных интервалов (см. рис.).
Множество решений неравенства: х∈(-6; 3).
ответ:(-6; 3).