пусть а, a+d, a+2d - три числа, образующие арифмитическую прогрессию, тогда
a+8, a+d, a+2d - три числа образующие геометричесскую прогрессию
отсюда и из условия имеем
a+8+a+d+a+2d=26 (условие задачи - сумма членов геометричесской прогрессии равна 26)
3a+3d=18
a+d=6 (*)
d=6-a
(a+d)^2=(a+8)(a+2d) (использовано свойство, если дано три последовательные члены геометрической прогрессии, то квадрат среднего равен произведению первого и третьего члена)
6^2=(a+8)(12-a) (используем (*) )
36=12a+96-a^2-8a
a^2-4a-60=0
D=256=16^2
a1=(4+16)/2=10
a2=(4-16)=-6
b[1]=a=10
b[2=]a+d=6
q=b[2]/b[1]=6/10=0.6
или
b[1]=a=-6
b[2]=a+d=6
q=b[2]/b[1]=6/(-6)=-1
Объяснение:
1.Представьте в виде степени выражение
А) х5∙х12∙х3 x5x12x3=x5+12+3=x20
Б) y13: y9 y13/y9=y13-9=y4 ( за задание )
2.Представьте в виде произведения степеней степени.
А) (ax)7 a7=x7
Б) (nm) 15n15=m15
( за задание )
3)Упростите выражение
А) 2 а-2 ∙3а4 2a-2*3a=2a (1-3a2)=46-3=4a9
Б) 24 а6: (6а-3)
( за задание )
4) Представьте в стандартном виде число.
А) 13000000000 13*10/9
Б) 0,000000015 15*10-9
( за задание )
5) Приведите в стандартный вид одночлены.
А) 5а2 ∙(-3) а3 в4 5a/2(-3)a/3b4-15=5b4
Б) 8ас5 ∙(-2а4) 8ac5*-2a4*16a5c5
( за задание )
x-3x≥5-3
-4x≥2
x≤1/2
(от минус бесконечности;1/2]