Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
Объяснение:
Arcsin(ctg(π/4))=arcsin(1)=π/ 2 cos(arcsin(-1/2)-arcsin(1))=cos(2π/3-π/2)= cos(4π/6-3π/6)=cos(π/6)=√3/2.
ОДЗ неравенства. 12+х-х²≥0; По теореме, обратной теореме Виета, найдем корни уравнения х²-х-12=0, это числа 4 и -3, и тогда -(х+3)*(х-4)≥0, или все равно, что (х+3)*(х-4)≤0
-34
+ - +
здесь решением будет х∈[-3;4]; Сtg3x существует, когда sin3x≠0; т.е. 3х≠πn, n∈Z ; х≠πn/3; n∈Z.
Квадрат котангенса на области определения неотрицателен, а Сtg²3x+4>0, значит, знак неравенства будет зависеть от второго множителя √12+х-х², а он будет неотрицательным на области своего определения. Т.е. х∈[-3;4] . Отбираем из отрезка целые, это -3;-2;-1;0;1;2;3;4
и из этой серии выбрасываем ноль, поскольку он обратит в нуль синус, и котангенс перестанет существовать.) Остается 7 целых чисел./
ответ 7
9x^2 - 12x + 4 - 9x^2 + 16 = 0
- 12x = - 20
12x= 20
x = 20/12
x = 5/3 = 1 2/3