Сделаем рисунок к задаче. Примем во внимание, что ∠ abd совсем не обязательно должен быть равен 90°, и на самом деле он не 90°, хотя и похож, потому при решении проигнорируем его.
Треугольник abm- равнобедренный.
В нем ∠ amb=∠ mad как углы при пересечении параллельных прямых секущей, а ∠ bam=∠ mad по построению.
Опустим из вершины b высоту bh.
ah=ab·sin(30)=25·1/2=12,5 bh=ab*sin(60)=(25√3):2 hd=(25+15)-12,5=27,5 bd= √(bh²+hd²)=√(25√3):2)²+(27,5 )²= √(1875/4+3025/4)=√4900/4=35 см ( можно и по теореме косинусов, результат должен быть одинаковым)
Вопрос не очень понятен, но вот все, что произошло с прямоугольником: Стороны были равны n и 6n . После увеличения первой и уменьшения второй первая стала 3*n= 3n, и вторая 6:2n= 3n. то есть получился квадрат со стороной 3n Периметр был (n+6n)*2 =14n, стал 4*3n=12n
Площадь прямоугольника была n*6n =6n^2, а стала 3n*3n=9n^2, то есть площадь увеличилась в полтора раза
Если же вопрос стоит тоько о площажи, то изменеие ее можно посчитать как произведение изменений сторон, то есть S2 = S1*3/2 = 1.5 S1