Если многочлен состоит из двух слагаемых, то его называют двучлен, если из трех - трехчлен. Названия четырехчлен, пятичлен и другие не используются, а в таких случаях говорят просто, многочлен.
приведение многочлена к стандартному виду состоит в том, чтобы привести каждый из одночленов к стандартному виду, а потом все подобные одночлены между собой сложить. Сложение подобных членов многочлена называют приведением подобных.
Например, приведем подобные слагаемые в многочлене 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b.
Подобными здесь являются слагаемые 4*a*b^2*c^3 и 6*a*b^2*c^3. Суммой этих слагаемых будет одночлен 10*a*b^2*c^3. Следовательно, исходный многочлен 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b можно переписать в виде 10*a*b^2*c^3 - a*b. Эта запись и будет стандартным видом многочлена
от сюда следует что любой многочлен можно привести к стандартному виду.
Удачи !
-2x²-5x+3>0
D=5²-4*9-20*3=25-10=15
x1=5+15/-4=-5
x2=5-15/-4=2.5
Чертим числовую прямую и получается.
ответ: (-∞;-5) и (3;+∞)
Если знаки >,< то скобки круглые и точка не закрашенная, а если ≤,≥ то скобки где числа квадратные и точка закрашенная. Также где бесконечность, то скобки всегда круглые.