Квадратное уравнение не имеет корней, если значение дискриминанта D < 0.
Запишем выражение для нахождения дискриминанта заданного уравнения:
D = n^2 - 4 * 2 * 8;
D = n^2 - 64.
Определим, при каких значениях n значение дискриминанта меньше 0, то есть решим неравенство n^2 - 64 < 0.
Разложим левую часть выражения на множители:
(n - 8)(n + 8) < 0.
Методом интервалом находим, что данное неравенство справедливо при n ∈ (-8; 8).
Следовательно, заданное квадратное уравнение не имеет корней при n ∈ (-8; 8).
ответ: при n ∈ (-8; 8).
xy=-3
x=-3:y
(-3:y)^2+y^2=10
9:y^2+y^2=10
9y^2+y^2=10
10y^2=10
y^2=10:10
y^2=1
y=1
x*1=-3
x=-3:1
x=-3