sin(πSinx)=-1
πsinx=-π/2+2πn, где n∈Z
sinx=-1/2+2n, где n∈Z, итак, n целое, но в данном случае, если n=-1 и меньше, то синуса не существует, так же как и при n равном 1 и больше единицы, поэтому n может принимать только значение, равное 0;
Если же n=0, то sinx=-1/2, тогда х=((-1)ⁿ+¹ ) π/6+πn; где n∈Z
при n=0, имеем х∉указанному отрезку
при n=1 x=7π/6;
при n=2 х=11π/6
при n=3 х∉Указанному отрезку, итак, у нас получились 2корня, которые принадлежат указанному промежутку . ЭТо
7π/6 и 11π/6
ответ Два корня.
sin(πSinx)=-1
πsinx=-π/2+2πn, где n∈Z
sinx=-1/2+2n, где n∈Z, итак, n целое, но в данном случае, если n=-1 и меньше, то синуса не существует, так же как и при n равном 1 и больше единицы, поэтому n может принимать только значение, равное 0;
Если же n=0, то sinx=-1/2, тогда х=((-1)ⁿ+¹ ) π/6+πn; где n∈Z
при n=0, имеем х∉указанному отрезку
при n=1 x=7π/6;
при n=2 х=11π/6
при n=3 х∉Указанному отрезку, итак, у нас получились 2корня, которые принадлежат указанному промежутку . ЭТо
7π/6 и 11π/6
ответ Два корня.
f(x) = (x-1)/4x².
f '(x) = -(x-2)/4x³.
Подставим значение х = 4.
Имеем tg α = f '(x=4) = -(4-2)/4*4³ = -2/(4*64) = -1/128.