процессы испускания и поглощения теплового излучения количественно характеризуются следующими величинами.
поток излучения (ф) — энергия, которую излучает вся поверхность тела за единицу времени.
по своей сути поток — это мощность излучения. размерность этой характеристики — [дж/с = вт].
энергетическая светимость (re) — энергия теплового излучения, испускаемая с единичной поверхности нагретого тела за единицу времени.

и поток излучения, и энергетическая светимость зависят от строения вещества и его температуры: ф = ф(т), re = re(t).
энергетическая светимость re, определенная выше, охватывает весь диапазон длин испускаемых волн (теоретически — от нуля до бесконечности). для того, чтобы показать, как излучаемая энергия распределена по этому диапазону, используют специальную величину, называемую спектральной плотностью энергетической светимости. обозначим энергию теплового излучения, испускаемую единичной поверхностью тела за 1 с в узком интервале длин волн от λ, до λ+dλ через dre.
Нам не очень нравится второй аргумент(x - π), поэтому применим соответствующую формулу приведения. Но сначала домножим аргумент на -1:
2cos³x + cos(π - x) = 0
Применяя формулы приведения ко второму аргументу, получаем более простое уравнение:
2cos³x - cos x = 0
Данное уравнение решается методом разложения на множители. Вынеся за скобки cos x:
cos x(2cos²x - 1) = 0
cos x = 0 или 2cos²x = 1
x = π/2 + πn, n∈Z cos²x = 1/2
(1 + cos 2x) / 2 = 1/2
1 + cos 2x = 1
cos 2x = 0
2x = π/2 + πk,k∈Z
x = π/4 + πk/2,k∈Z
Перед тем, как начать отбирать корни, сначала попробуем определить, какое решение является более общим, то есть, какое решение вмещает в себя решения другого уравнения. Для этого приравняем обе формулы и выразим одну переменную через другую:
π/2 + πn = π/4 + πk/2
Выразим предположим n через k, так как это сделать намного проще:
πn = π/4 - π/2 + πk/2
n = 1/4 - 1/2 + k/2
n = -1/4 + k/2 = k/2 - 1/4
Проанализировав это равенство приходим к выводу, что k > n. Значит, второе решение включает в себя также первое решение, а потому, решение π/4 + πk/2 и является более общим. По этой формуле и будем производить отбор корней.
Впихнём эту формулу в заданный интервал и решим двойное неравенство относительно k.
-π/2 < π/4 + πk/2 ≤ π/2
-3π/4 < πk/2 ≤ π/4
Разделим всё неравенство на π/2, получаем:
-1.5 < k ≤ 1
Значит, при k= -1; 0; 1 получатся корни, принадлежащие данному промежутку. Теперь посдтавим просто k в нашу формулу и найдём эти корни:
k = 0 x = π/4
k = 1 x = π/4 + π/2 = 3π/4
k = -1 x = π/4 - π/2 = -π/4
Это корни, принадлежащие данному промежутку. Здаачу мы решили.