ответ: мотоц1=40км/; мотоц2=45км/ч
Объяснение: пусть скорость одного мотоциклиста=х, а второго=х+5. Один мотоциклист потратил 180/х времени, а второй 180/(х+5). Если второй мотоциклист приехал раньше на 0,5 или 1/2 часа, то затратил на поездку меньше времени чем первый. Составим уравнение:
180/х-(180/(х+5))=1/2 |находим общий знаменатель: х(х+5)
(180х+900-180х)/(х(х+5)1/2
900/(х²+5х)=1/2 |перемножим числитель и знаменатель соседних дробей крест накрест:
х²+5х=900×2
х²+5х=1800
х²+5х-1800=0
Д=25-4×(-1800)=25+7200=7225
х1=( -5-85)/2= -90/2= -45
х2= (-5+85)/2=80/2=40
Итак у нас есть 2 варианта значения х, но х1 нам не подходит поскольку скорость не может быть отрицательной поэтому используем х2=40
Скорость 1-го мотоциклиста=40км/ч, тогда скорость 2-го=40+5=45км/ч
ответ: скорость победителя=12км/ч
Объяснение: пусть скорость 2-го велосипедиста=х, тогда скорость 1-го=х+4. Второй велосипедист потратил на дорогу 96/х времени, а первый 96/х+4. Первый велосипедист потратил времени на 4 меньше, чем второй на дорогу. Составим уравнение:
(96/х)-96(х+4)=4 | находим общий знаменатель: х(х+4)
(96х+384-96х)/х(х+4)=4
384/х²+4х=4 |перемножим числитель и знаменатель соседних дробей крест накрест:
4(х²+4х)=384 |÷4
х²+4х=96
х²+4х-96=0
Д=16-4×(-96)=16+384=400
х1=( -4-20)/2= -24/2= -12
х2=(-4+20)/2=16/2=8
Итак у нас есть 2 значение х, но х1= -12 нам не подходит поскольку скорость не может быть отрицательной поэтому используем х2=8.
Скорость второго велосипедиста=8км/ч, тогда скорость первого=8+4=12км/ч
= -3a^2/4b(b+c)
2) (m-n)^2\m^2-n^2 = (m-n)^2 / (m-n)(m+n) = (m-n)/(m+n)
3) 6pq-18p\(q-3)^2 = 6p(q - 3)/(q - 3)^2 = 6p/(q-3)
4) c^2-18c+81\c-9 = (c-9)^2 / (c-9) = c - 9
5) 5-2m\4m^2-20m+25 = (5 - 2m)/(5-2m)^2 = 1/(5-2m)
6) b^2-49\49-14b+b^2 = (b-7)(b+7)/(b-7)^2= (b+7)/(b-7)
7) 4n^2-4nm+m^2\4n^2-m^2 = (2n-m)^2 / (2n-m)(2n+m) =(2n-m)/(2n+m)
8) a^2-ab-bс-c^2\b^2-a^2+2ac-c^2 = [(a^2-c^2) - b(a+c)] / [b^2 - (a-c)^2] =
= [(a-c)(a+c) - b(a+c)] / [(b-(a-c)(b+(a-c)] = [(a+c)(a-c-b)]/ [-(a-c-b)(a+b-c)]=
= -(a+c)/(a+b-c)
9) x^2-yz+xz-y^2\x^2+yz-xz-y^2 = = [(x^2-y^2) - z(x-y)] / [(x^2-y^2) - z(x-y)]=1
10) 8^11-8^10-8^9\4^15-4^14-4^13 = 8^4(1-1^6-1^5) / 4^12(1^3-1^2-1) =
= 8^4 (1-1-1)/4^12(1-1-1) = 8^4/4^12
11) 87^3+43^3\87^2-87*43+43^2 =
= (87+43)(87^2-87*43+43^2)/(87^2-87*43+43^2) =(87+43) = 130