и
– среднеарифметическое равно
и при этом
на
меньше двадцати пяти и на
больше семнадцати.
монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на
монет меньше изначального, а у Пети на
монет больше изначального. А значит, вначале у Васи было на
монет больше, чем у Пети.
монет. Тогда у Пети
монет.
монет, а у Пети-II будет
монет. При этом у Пети-II монет в
раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в
раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:



было целым, целой должен быть и результат деления в дроби, а чтобы
было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда
откуда:




было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет
откуда:
3) 3/10
4) 4/14
5) 4/5
6) 4/15
7) 26,3
8) 4,5
9) 19,68
10) 1,6
Объяснение:
3) (6/5-3/4) * 2/3 = ((24-15)/20) * 2/3 = 9/20 * 2/3 = 3/10
4) (8/7-1/14+1/42) * 12/46 = ((48-3+1)/42) * 12/46 = 46/42 * 12/46 = 12/42 = 4/14
5) 1 2/5 + 3/8 - 39/40 = 7/5 + 3/8 - 39/40 = (56 + 15 -39)/40 = 32/40 = 4/5
6) (6/5 - 2/3) * 1/2 = ((18-10)/15) * 1/2 = 8/15 * 1/2 = 4/15
7) 6,8 * 3,5 + 2,5 = 23,8 + 2,5 = 26,3
8) 8,26 - 7,52 : 2 = 8,26 - 3,76 = 4,5
9) 4,6 * 3,9 + 1,74 = 17,94 + 1,74 = 19,68
10) 4,51 - 5,82 : 2 = 4,51 - 2,91 = 1,6
В 4) и 5) дроби сокращены.