М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vualada
vualada
25.09.2021 20:26 •  Алгебра

Розвязаты ривняння x-0,4(x-14)=3,1(3x-1)

👇
Ответ:
cherrpaha
cherrpaha
25.09.2021

x-0,4(х-14)=3,1(3х-1)

х-0,4х+5,6=9,3х-3,1

х-0,4х-9,3х=-5,6-3,1

-8,7х=-8,7

х=-8,7:(-8,7)

х=1

4,5(99 оценок)
Ответ:
nasti2125
nasti2125
25.09.2021

0.6х - 9.3х = - 3.1 - 5.6

-8.7х = - 8.7 

х = 1

4,8(2 оценок)
Открыть все ответы
Ответ:
Human333
Human333
25.09.2021
Пусть в силу условия
a+b=x^2 (1)
ab=y^2 (2)
где х, y - некоторые натуральные числа

Предположим что b \geq a
тогда из второго соотношения (2) следует что
b=ak^2
где k - некоторое натуральное число

откуда
|16a-9b|=|16a-9ak^2|=|a(16-9k^2)|=\\\\|a||16-9k^2|=a|16-9k^2|
а значит число |16a-9b| сложное если
|16-9k^2| \neq 1
и a \neq 1

Рассмотрим варианты
1) a=1
b+1=x^2
b=y^2
что невозможно - два последовательных натуральных числа не могут быть квадратами натуральных чисел
(доказательство єтого факта
(b+1)-b=x^2-y^2
1=(x-y)(x+y)
1=x-y
1=x+y
=>x=1; y=0
)
2) 16-9k^2=1
15=9k^2
5=3k^2
=> k - ненатуральное -- невозможно
3) 16-9k^2=-1
17=9k^2
=> k - ненатуральное - невозможно
тем самым окончательно доказали,что исходное утверждение верно.

Случай когда a 
Учитывая симметричность выражений a+b=b+a, ab=ba
доказывается аналогично.
Доказано
4,6(62 оценок)
Ответ:
VladKot133
VladKot133
25.09.2021
Для начала найдём частные производные 1-ого порядка. Всего их 3(т.к. 3 переменные).

u'_x=(xz*tg\sqrt{y})'_x=z*tg\sqrt{y}
u'_y=(xz*tg\sqrt{y})'_y=xz*\frac{1}{cos^2\sqrt{y}}*(\sqrt{y})'=\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})}\\u'_z=(xz*tg\sqrt{y})'_z=xtg\sqrt{y}

Когда мы считаем производную по какой-то переменной, то мы считаем что все остальные переменные независимые. К примеру:
w=2x\rightarrow w'_x=2\\w=yx\rightarrow w'_x=y\ \ \ (w'_y=x)\\w=y+x\rightarrow w'_x=1\ \ \ (w'_y=1)
Грубо говоря когда мы ищем производную по x, мы считаем что у это какое-то число. Надеюсь это понятно.

Теперь частные производные второго порядка.
Рассмотрим производную по х. Во второй раз мы может взять её опять же  по 3 переменным.
u''_{x^2}=(z*tg\sqrt{y})'_x=0\\u''_{xy}=(z*tg\sqrt{y})'_y=\frac{z}{2\sqrt{y}*cos^2\sqrt{y}}\\u''_{xz}=(z*tg\sqrt{y})'_z=tg\sqrt{y}

Теперь рассматриваем производную по у. Её  2-уй производную берём снова по 3-ём переменным.
u''_{yx}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_x=\frac{z}{2\sqrt{y}*cos^2(\sqrt{y})}

u''_{y^2}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_y=\frac{(xz)'_y*2\sqrt{y}*cos^2(\sqrt{y})-xz*(2\sqrt{y}*cos^2(\sqrt{y}))'_y}{(2\sqrt{y}*cos^2(\sqrt{y}))^2}=\\=\frac{-2xz*(\frac{1}{2\sqrt{y}}*cos^2(\sqrt{y})+\sqrt{y}*2cos(\sqrt{y})*(-sin\sqrt{y})*\frac{1}{2\sqrt{y}})}{4ycos^4(\sqrt{y})}=\\=\frac{-2xz*\frac{cos\sqrt{y}}{2\sqrt{y}}(cos(\sqrt{y})-2\sqrt{y}sin(\sqrt{y}))}{4ycos^4(\sqrt{y})}=\frac{-xz(cos(\sqrt{y})-2\sqrt{y}sin(\sqrt{y}))}{4\sqrt{y^3}cos^3(\sqrt{y})}\\

u''_{yz}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_z=\frac{x}{2\sqrt{y}*cos^2(\sqrt{y})}

Заметим что:
u''_{xy}=u''_{yx}
Такие равенства выполняются и для других смешанных производный, то есть:u''_{xz}=u''_{zx}

И наконец рассмотрим производную по z. Опять же 3 варианта. Но теперь мы воспользуемся равенством рассмотренным выше.
u''_{zx}=u''_{xz}=tg\sqrt{y}\\u''_{zy}=u''_{yz}=\frac{x}{2\sqrt{y}*cos^2(\sqrt{y})}\\u''_{z^2}=(xtg(\sqrt{x}))'_z=0

Ну вот и всё. Будут вопросы - спрашивайте.
4,7(29 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ