51,2:100·х=0,512х - составляют х процентов от числа 51,2 51,2+0,512х - таким стало число после первого повышения (51,2+0,512х):100·х- составляют х процентов от нового числа 51,2+0,512х+(51,2+0,512х):100·х =51,2+0,512х+0,512х+0,00512х²- таким стало число после второго повышения (51,2+0,512х+0,512х+0,00512х²):100·х - составляют х процентов от числа после второго повышения 51,2+0,512х+0,512х+0,00512х²-(51,2+0,512х+0,512х+0,00512х²):100·х =51,2+0,512х+0,512х+0,00512х²-0,512х-0,00512х-0,00512х-0,0000512х³ - таким стало число после первого понижения (51,2+0,512х+0,512х+0,00512х²-0,512х-0,00512х-0,00512х-0,0000512х³):100·х - составляют х процентов от числа после первого понижения 51,2+0,512х+0,512х+0,00512х²-0,512х-0,00512х-0,00512х-0,0000512х³-(51,2+0,512х+0,512х+0,00512х²-0,512х-0,00512х-0,00512х-0,0000512х³):100·х - число после второго понижения, а по условию это 28,8 Упрощаем 51,2+0,512х+0,00512х²-0,01024х-0,0000512х³-0,512х-0,00512х²-0,00512х²-0,0000512х³+0,00512х²+0,0000512х²+0,0000512х²+0,000000512х⁴=28,8 Осталось решить это уравнение
1. Из условия нам ясно, что a(4)/a(1)=7 и a(6)*a(3)=220. Мы знаем, что формула n-члена арифметической прогрессии выглядит следующим образом: a(n)=a(1)+(n-1)*d. Воспользовавшись этим можем составить следующие соотношения: =7 и (a(1)+5*d)*(a1+2d)=220 У нас получается система из двух уравнений. Решаем её. Получаем, что a(1)=2 или a(1)=-2, d=2a но так как прогрессия убывает, то подходит a(1)=-2 ОТВЕТ: -2
4x-5x=-10-12
-x=-22
х=-22:(-1)
x=22
ответ: x=22
2) -2x+10+3x-12=4x+1
-2x+3x-4x=1+12-10
-3x=3
х=3:(-3)
x=-1
ответ: х=-1