ответ:Второй велосипедист:
Расстояние - 88 км
Скорость - х км/ч
Время в пути - 88/х ч.
Первый велосипедист:
Расстояние - 88 км
Скорость - (х+3) км/ч
Время в пути - 88/ (х+3) ч.
Зная, что второй велосипедист затратил на весь путь больше времени на 3 часа.⇒ Уравнение.
88/х - 88/(х+3)= 3
Избавимся от знаменателя.
88(х+3) - 88х = 3* х*(х+3)
88х +264 - 88х = 3х²+9х
3х²+9х-264 =0
Раздели обе части уравнения на 3:
х²+3х -88=0
D= 9-4*(-88) = 9+352=361
x₁ = (-3-√361) /2 = (-3-19)/2= -11 - не удовл. условию задачи, т.к. скорость не может быть отрицательным значением.
х₂= (-3+19)/2= 16/2=8 км/ч - скорость второго велосипедиста, который и пришел вторым к финишу.
8+3= 11 км/ч - скорость первого велосипедиста
Проверим:
88/8 - 88/11 = 11 ч. - 8 ч.= 3 ч. - разница во времени
ответ: 8 км/ч скорость велосипедиста, который пришел вторым к финишу.
Объяснение:
1). что-то не то с условием: из четырех чисел нельзя составить пятизначное число, не имеющие в составе повторяющихся цифр.
2). по признаку делимости на 5: чтобы число делилось на 5, надо, чтоб оно оканчивалось на 0 или 5. Т.к. данные цифры не используются, то числа, делящиеся на 5 составить нельзя.
по признаку делимости на 4: чтобы число делилось на 4, надо, чтоб число составленное из двух последних цифр в том же порядке делилось на 4. из данных цифр можно составить только числа оканчивающиеся на 24, 72, 32.
разберем вариант с 24. тогда с первой и второй цифрами числа так: т.к. цифры не повторяются 2 и 4 использовать нельзя. тогда на первое место в числе можно поставить любую из двух оставшихся цифр (таких 2), а на второе место уже оставшуюся цифру...в результате количество требующихся чисел 2*1=2.
аналогично получим 2 числа оканчивающиеся на 32 и 2 числа оканчивающиеся на 72.
ответ: а) 6 чисел. б) ни одного
3). т.к. учебники алгебры могут стоять только рядом, то возьмем их как один объект, тогда объектов, которые надо расставить у нас 4 (причем 3 из них одного вида - учебники геометрии (я так понимаю нет разницы какой из них будет стоять раньше, какой позже)). существует формула для перестановок с повторениями:
где n - общее кол-во объектов, а и т.д. - кол-во объектов каждого вида
получаем
4). Чисел которые начинаются с 2 - можно составить два. чисел, где 2 стоит на втором месте - тоже два, где на третьем - два. аналогично для 4 и 6.
теперь найдем сумму всех таких чисел: (2*100+2*10+2)*2+(4*100+4*10+4)*2+(6*100+6*10+6)*2
угловой коэфф. есть производная функции
f'(x)=3cosx + sinx
f'(П/2)=3·0 + 1 = 1