М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sonyakaka332
sonyakaka332
04.02.2023 07:43 •  Алгебра

Найти значение выражения 3(р(2х)-4р(х+3)) если р(х)=х^2-12х-3.

👇
Ответ:
moȗnuk
moȗnuk
04.02.2023
P(2x) = (2x)² - 12*2x -3 = 4x² - 24x -3
p(x+3) = (x+3)² -12*(x+3) -3 = x² +6x +9 -12x -36 -3 = x²-6x-30
-4p(x+3) = -4*(x²-6x-30) = -4x² + 24x +120
p(2x) -4p(x+3) = 4x² -24x -3 -4x² +24x +120 =  117
3(p(2x) -4p(x+3)) = 3* 117 = 351
4,6(35 оценок)
Открыть все ответы
Ответ:
рксский
рксский
04.02.2023

Объяснение:

Решение квадратного неравенства

Неравенство вида

где x - переменная, a, b, c - числа, , называется квадратным.

При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.

В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции

Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.

Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.

Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.

Такой метод решения квадратного неравенства называется графическим.

4,6(56 оценок)
Ответ:
STavctva
STavctva
04.02.2023
1) y=sin x, y=cos x, x=-5π/4, x=π/4.
Заданный отрезок графиками функций разбивается на 2 участка: левая часть - от заданного предела x=-5π/4 до точки встречи графиков, где график функции синуса выше графика косинуса.
Направо от этой точки график синуса выше графика косинуса.
Это определяет площадь как сумма интегралов разностей функций.
Точка встречи - это значение (-π+(π/4)) = -3π/4.
S= \int\limits^{- \frac{3 \pi }{4} }_{- \frac{5 \pi }{4} } {(sin(x)-cos(x))} \, dx + \int\limits^{- \frac{ \pi }{4} }_{- \frac{3 \pi }{4} } {(cos(x)-sin(x))} \, dx.
Значения аргумента в заданных пределах:
-1.25π =  -3.92699,
-0.75π =  -2.35619,
 0.25π =  0.785398.
Значения функции синуса в заданных пределах:
0.707107,    -0.70711,   0.707107. (это +-√2/2)
Значения функции косинуса в заданных пределах:
-0.70711,    -0.70711,    0.707107.  (это +-√2/2)
Значения функции косинуса в заданных пределах:
Площадь равна  1.414214 + 2.828427 = 4.242641 = 3√2.

2) y=-x^2-2x+4, y=-x^2+4x+1, y=5.
Заданный отрезок графиками функций разбивается на 2 участка, граничные точки которых надо определить.
Средняя точка - равенство функций y=-x^2-2x+4, y=-x^2+4x+1.
-x^2 - 2x + 4 = -x^2 + 4x + 1,
6х = 3,
х = 3/6 = 1/2.
Левая точка - равенство y=-x^2-2x+4, y=5
-x^2 - 2x + 4 = 5.
-x^2 - 2x -1 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*(-1)*(-1)=4-4*(-1)*(-1)=4-(-4)*(-1)=4-(-4*(-1))=4-(-(-4))=4-4=0; Дискриминант равен 0, уравнение имеет 1 корень:
x=-(-2/(2*(-1)))=-(-2/(-2))=-(-(-2/2))=-(-(-1))=-1. 
Правая точка - равенство y=-x^2+4x+1, y=5.
-x^2 + 4x + 1 = 5.
-x^2 + 4x - 4 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=4^2-4*(-1)*(-4)=16-4*(-1)*(-4)=16-(-4)*(-4)=16-(-4*(-4))=16-(-(-4*4))=16-(-(-16))=16-16=0; Дискриминант равен 0, уравнение имеет 1 корень:
x=-4/(2*(-1))=-4/(-2)=-(-4/2)=-(-2)=2. Линия у = 5 находится выше парабол.
Площадь равна:
S= \int\limits^{ \frac{1}{2} }_{-1} {(x^2+2x+1)} \, dx + \int\limits^2_{ \frac{1}{2} } {(x^2-4x+4)} \, dx = \frac{x^3}{3}+ \frac{2x^2}{2}+x|_{-1}^{ \frac{1}{2} }+ \frac{x^3}{3}- \frac{4x^2}{2}+4x|_{ \frac{1}{2} }^2= \frac{9}{4}=2,25.
4,6(34 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ