Постройте график квадратичной функции и опишите её свойства у=-2х²+8х-6
Объяснение:
у=-2х²+8х-6 ,это парабола ,ветви вниз ( -2<0).
1) Координаты вершины :
х₀=-в/2а, х₀=-8/(-2*2)=2 , у₀=-2*4+8*2-6=2, (2; 2).
2)Точки пересечения с осью ох ( у=0) ;
-2х²+8х-6 =0 , х²-4х-+3=0 , х₁=1 , х₂3 . Тогда ( 1;0) , (3;0).
3) Точки пересечения с осью оу(х=0);
у(0)=-2*0²+8*0-6 =-6 , Тогда ( 0; -6).
4) Доп.точки у=-2х²+8х-6 :
х: -1 4
у: -16 -6
Свойства функции у=-2х²+8х-6 :
а) Возрастает при х∈(-∞ ;2}, убывает при х∈[2 ;+∞).
б) Принимает положительные значения ( у>0) при х∈(1 ; 3) .
Принимает отрицательные значения (y<0) при х∈(-∞ ;1)∪(3 ;+∞).
Принимает значения равные нулю ( у=0) при х=1, 3.
в) Принимает наибольшее значение у=2 при х=2.
Дано уравнение x^2 - 4x - 6 = √(2x^2 - 8x + 12).
Чтобы не возводить квадратный трёхчлен в квадрат для избавления от корня в правой части, введём замену: x^2 - 4x = а.
Под корнем выражение 2x^2 - 8x равно 2(x^2 - 4х) = 2а.
Получим а - 6 = √(2а + 12). Так проще возвести в квадрат обе части.
а² - 12а + 36 = 2а + 12.
а² - 14а + 24 = 0. Д = 196 - 4*24 = 100.
а1 = (14 - 10)/2 = 2, а2 = (14 + 10)/2 =12.
x^2 - 4x = 2, x^2 - 4x - 2 = 0, Д = 16 + 8 = 24,
х1 = (4 - √24)/2 , х2 = (4 + √24)/2. При проверке - это лишние корни.
x^2 - 4x = 12, x^2 - 4x - 12 = 0, Д = 16 + 48 = 64,
х1 = (4 - 8)/2 = -2 , х2 = (4 + 8)/2 = 6.
ответ: х1 = -2, х2 = 6.
,