М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sergey19751975
sergey19751975
16.01.2020 02:51 •  Алгебра

Найдите наименьший положительный период функции: 1)y=п+cos2x 2)y=2-3cosпx 3)y=1+sin2x 4)y=sin^2 x

👇
Ответ:
ппср
ппср
16.01.2020
T=2π/k
1)y=П+cos2x
k=2⇒T=2π/2=π
2)y=2-3cosПx
k=π⇒T=2π/π=2
3)y=1+sin2x
k=2⇒T=2π/2=π
4)y=sin^2 x=1/2-1/2*cos2x
k=2⇒T=2π/2=π
4,5(51 оценок)
Открыть все ответы
Ответ:
daниил1
daниил1
16.01.2020

ответ:1)Алгебраической называют дробью.

2)Тождество — это уравнение, которое удовлетворяется тождественно

3)число n (показывающее сколько раз повторяется множитель) – показателем степени

4)Квадратное уравнение называют приведенным, если его старший коэффициент равен 1. 

5)Решить уравнение - значит найти все его корни или установить, что их нет. 

6)Деление числителя и знаменателя на их общий делитель, отличный от  

единицы, называют сокращением дроби.  

7)при умножении ( делении ) числителя и знаменателя на одно и то же выражение ( число) получившаяся дробь = исходной

8)числители перемножаются отдельно 

отдельно знаменатели 

полученную дробь если это возможно сокращают 

пример 

2/3* 3/4 = (2*3)/(3*4)=6/12=1/2 (произвели сокращение на 6

9)Вам известно, что значение обыкновенной дроби не изменится, если ее числитель и знаменатель одновременно умножить или разделить на одно и то же отличное от нуля число.

10)  Сложение и вычитание алгебраических дробей c одинаковыми  

знаменателями выполняется по тому же правилу, что и с обыкновенными  

дробями:  

                                       аd + bd – cd     =     a+b−cd .  

11)  Нам известно, что дробь   34   равна частному   3 : 4 ,  

значит, выражение     ( 14+ 15) : ( 13− 16)     =       ( 14+ 15)( 13− 16) .    

        Частное двух чисел или выражений, в котором знак деления  

обозначен чертой, называют дробным выражением.    

     Найдем значения выражений:  

       а)     ( 14+ 15)( 13− 16)     =     ( 520+ 420)( 26− 16)     =     ( 920)( 16)     =          920   :   16     =    

                 =     920• 61       =       5420       =     2 710     =     2,7 

12)Пусть a0 и a1 - натуральные числа. Для нахождения их наибольшего общего делителя используется алгоритм Евклида [1] последовательного деления с остатком: a0=a0a1+a2,    a1=a1a2+a3,    a2=a2a3+a4, … ,где натуральные числа a0,a1,a2, … суть неполные частные. Это алгоритм разложения числа a =a0/a1 в правильную цепную дробь, и он применим к любым вещественным числам a. При этомa0=[a], где [a] - целая часть числа a, a1=[1/(a-a0)], … , т.е. 

a=a0+ 1a1+ 1a2+ 1a3+  ···,

13)http://school.xvatit.com/images/9/92/11-06-34.jpg

14)Складываются показатели степеней при УМНОЖЕНИИ степеней с одинаковыми основаниями. 

2^3+2^5=8+32=40.

Подробнее - на -

Объяснение:

4,7(15 оценок)
Ответ:
Farida1601
Farida1601
16.01.2020

Формулировка и доказательство теоремы косинусов

Теорема косинусов является обобщением теоремы Пифагора для произвольного треугольника.

Формулировка теоремы косинусов

Для плоского треугольника со сторонами a,b,c и углом α, противолежащим стороне a, справедливо соотношение:

Теорема косинусов

Изображение для пояснения сути теоремы косинусов - квадрат стороны произвольного треугольника равен сумме квадратов двух других сторон минус удвоенное их произведение на косинус угла между ними

Квадрат одной стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного их произведения, умноженного на косинус угла между ними

Полезные формулы теоремы косинусов:

Полезные формулы теоремы косинусов - сама теорема, нахождение косинуса угла по трем сторонам и нахождение самого угла по трем сторонам треугольника

Как видно из указанного выше, с теоремы косинусов можно найти не только сторону треугольника по двум сторонам и углу между ними, можно, зная размеры всех сторон треугольника, определить косинусы всех углов, а также вычислить величину любого угла треугольника. Вычисление любого угла треугольника по его сторонам является следствием преобразования формулы теоремы косинусов.

Доказательство теоремы косинусов

Теорема Косинусов

Рассмотрим произвольный треугольник ABC. Предположим, что нам известна величина стороны AC (она равна некому числу b), величина стороны AB (она равна некому числу c) и угол между этими сторонами, величина которого равна α. Найдем величину стороны BC (обозначив ее длину через переменную a)

Для доказательства теоремы косинусов проведем дополнительные построения. Из вершины C на сторону AB опустим высоту CD.

Найдем длину стороны AB. Как видно из рисунка, в результате дополнительного построения можно сказать, что

AB = AD + BD

Найдем длину отрезка AD. Исходя из того, что треугольник ADC является прямоугольным, нам известны длина его гипотенузы (b) и угол (α) то величину стороны AD можно найти из соотношения его сторон, пользуясь свойствами тригонометрических функций в прямоугольном треугольнике:

AD / AC = cos α

откуда

AD = AC cos α

AD = b cos α

Длину стороны BD найдем как разность AB и AD:

BD = AB - AD

BD = c − b cos α

Теперь запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

для треугольника BDC

CD2 + BD2 = BC2

для треугольника ADC

CD2 + AD2 = AC2

Обратим внимание на то, что оба треугольника имеют общую сторону - CD. Определим ее длину для каждого треугольника - вынесем ее значение в левую часть выражения, а остальное - в правую.

CD2 = BC2 - BD2

CD2 = AC2 - AD2

Поскольку левые части уравнений (квадрат стороны CD) равны, то приравняем правые части уравнений:

BC2 - BD2 = AC2 - AD2

Исходя из сделанных ранее вычислений, мы уже знаем что:

AD = b cos α

BD = c − b cos α

AC = b (по условию)

А значение стороны BC обозначим как a.

BC = a

(Именно его нам и нужно найти)

Получим:

BC2 - BD2 = AC2 - AD2

Заменим буквенные обозначения сторон на результаты наших вычислений

a2 - ( c − b cos α )2 = b2 - ( b cos α )2

перенесем неизвестное значение (а) на левую сторону, а остальные части уравнения - на правую

a2 = ( c − b cos α )2 + b2 - ( b cos α )2

раскроем скобки

a2 = b2 + c 2 - 2c b cos α + ( b cos α )2 - ( b cos α )2

получаем

a2 = b2 + c 2 - 2bc cos α

Теорема косинусов доказана.

Случай, когда один из углов при основании тупой (и высота падает на продолжение основания), полностью аналогичен рассмотренному.

4,7(57 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ