Уравнение любой касательной к любому графику находится по формуле: Где производная функции в данной точке. А точка касания по иксу.
1) Поначалу у функции мы должны найти производную общего типа этой функции. Это степенная функция, а производная любой степенной функции находится следующей формулой: - где n это степень. В нашем случае: Так, нашли производную общего случая.
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
2) Опять же, найдем производную Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
То есть, берешь любой икс, и вставляешь в выражение касательной вместо и получаешь уравнение касательной.
Это и есть окончательные ответы. Если что-то не правильно, то это значит что вы не правильно написали условие.
Воспользуемся формулой "сумма синусов равна удвоенному произведению синуса полусуммы на косинус полуразности":
2sin ((x+y)/2)cos ((x-y)/2)= - √2;
из первого уравнения ⇒sin((x+y)/2)=sin (π/2)=1, поэтому второе уравнение превращается в
sin((x-y)/2)=-√2/2; (x-y)/2=-π/4+2πn или (x-y)/2=-3π/4+2πk; x-y=-π/2+4πn или x-y=-3π/2+4πk. Чтобы получить ответ, сложим первое уравнение с получившимися и результат разделим на 2 (найдем x), а затем вычтем из первого получившиеся и результат разделим на 2 (найдем y).
x=π/4+2πn или x=-π/4+2πk; y=3π/4-2πn или y= 5π/4-2πk
ответ: (π/4+2πn; 3π/4-2πn); (-π/4+2πk; 5π/4-2πk); n, k∈Z
п=2к+1.
(2к+1+2)^2-1=(2к+3)^2-1=4к^2+12к+9-1=4к^2+12к+8=4(к^2+3к+2).
пусть к=1. 4·6=24:8
к=3. 4·20=80:8