М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dashahomjak1
dashahomjak1
04.03.2020 01:35 •  Алгебра

Lg(5x-7)> 2; log0,1(5-3x)\< -2 решение простейших логарифмических неравенств

👇
Ответ:
sergeevan73
sergeevan73
04.03.2020
&#10;lg(5x-7)\ \textgreater \ 2 \\ \\lg(5x-7)\ \textgreater \ 2\cdot 1 \\ \\ 1=lg10 \\ \\lg(5x-7)\ \textgreater \ 2\cdot lg10 \\ \\lg(5x-7)\ \textgreater \ 2\cdot lg10 \\ \\ lg(5x-7)\ \textgreater \ lg10^2 \\ \\ \left \{ {{5x-7\ \textgreater \ 100} \atop {5x-7\ \textgreater \ 0}} \right. \\ \\ 5x\ \textgreater \ 107 \\ \\ x\ \textgreater \ 21,4

log0,1(5-3x)\ \textless \ -2 \\ \\ log0,1(5-3x)\ \textless \ -2\cdot log{0,1}0,1 \\ \\ log0,1(5-3x)\ \textless \ log{0,1}(0,1)^{-2} \\ \\ \left \{ {{5-3x\ \textgreater \ 0} \atop {5-3x\ \textgreater \ 100}} \right. \\ \\ 5-3x\ \textgreater \ 100 \\ \\ -3x\ \textgreater \ 95 \\ \\ x\ \textless \ -31 \frac{2}{3}
4,5(13 оценок)
Открыть все ответы
Ответ:
MasterDrenZik
MasterDrenZik
04.03.2020
Функции  и построить ее график.

1) Функция определена всюду, кроме точек .

2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.

3) Функция не периодическая.

4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.

5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая  – вертикальная асимптота.

6) Находим  и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).

В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.

Найти первую производную функции

Для проверки правильности нахождения минимального и максимального значения.

7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).

Найти вторую производную функции

8) Выясним вопрос об асимптотах.

Наличие вертикальной асимптоты  установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.

Найдем наклонные асимптоты: , , следовательно, y=-x – наклонная двусторонняя асимптота.

9) Теперь, используя полученные данные, строим чертеж:
4,7(41 оценок)
Ответ:
NataliGuk
NataliGuk
04.03.2020

Формулы Виета — формулы, связывающие коэффициенты многочлена и его корни.

Этими формулами удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням.

Эти тождества неявно присутствуют в работах Франсуа Виета. Однако Виет рассматривал только положительные вещественные корни, поэтому у него не было возможности записать эти формулы в общем виде.[1]:138—139

Если {\displaystyle c_{1},c_{2},\ldots ,c_{n}} — корни многочлена

{\displaystyle x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots +a_{n}}

(каждый корень взят соответствующее его кратности число раз), то коэффициенты {\displaystyle a_{1},\ldots ,a_{n}} выражаются в виде симметрических многочленов от корней[2], а именно:

{\textstyle {\begin{aligned}a_{1}&=-(c_{1}+c_{2}+\ldots +c_{n}),\\a_{2}&=c_{1}c_{2}+c_{1}c_{3}+\ldots +c_{1}c_{n}+c_{2}c_{3}+\ldots +c_{n-1}c_{n},\\a_{3}&=-(c_{1}c_{2}c_{3}+c_{1}c_{2}c_{4}+\ldots +c_{n-2}c_{n-1}c_{n}),\\&~~\vdots \\a_{n-1}&=(-1)^{n-1}(c_{1}c_{2}\ldots c_{n-1}+c_{1}c_{2}\ldots c_{n-2}c_{n}+\ldots +c_{2}c_{3}...c_{n}),\\a_{n}&=(-1)^{n}c_{1}c_{2}\ldots c_{n}.\end{aligned}}}

Иначе говоря, {\displaystyle (-1)^{k}a_{k}} равно сумме всех возможных произведений из {\displaystyle k} корней.

Следствие: из последней формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также целочисленный.

Если старший коэффициент многочлена не равен единице:

то для применения формулы Виета необходимо предварительно разделить все коэффициенты на {\displaystyle a_{0}} (это не влияет на значения корней многочлена). В этом случае формулы Виета дают выражение для отношений всех коэффициентов к старшему:

{\displaystyle {\frac {a_{k}}{a_{0}}}=(-1)^{k}\sum _{1\leqslant i_{1}<i_{2}<\cdots <i_{k}\leqslant n}c_{i_{1}}c_{i_{2}}\dots c_{i_{k}},\quad k=1,2,\dots ,n.}

Доказательство осуществляется рассмотрением равенства, полученного разложением многочлена по корням, учитывая, что {\displaystyle a_{0}=1}

{\displaystyle x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots +a_{n}=(x-c_{1})(x-c_{2})\cdots (x-c_{n}).}

Приравнивая коэффициенты при одинаковых степенях {\displaystyle x} (теорема единственности), получаем формулы Виета.

Винберг Э. Б. Алгебра многочленов. Учебное пособие для студентов-заочников III—IV курсов физико-математических факультетов педагогических институтов. — М.: Просвещение, 1980.Weisstein, Eric W. Vieta's Formulas / From MathWorld--A Wolfram Web Resource (англ.)Hazewinkel, Michiel, ed. (2001), "Viète theorem" (недоступная ссылка), Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4 (англ.)Funkhouser, H. Gray (1930), "A short account of the history of symmetric functions of roots of equations", American Mathematical Monthly (Mathematical Association of America) 37 (7): 357–365, doi:10.2307/2299273, JSTOR 2299273 (англ.)

4,5(74 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ