Войти
АнонимМатематика21 августа 15:52
Во сколько раз увеличится периметр квадрата и во сколько раз увеличится его площадь, если каждую сторону увеличить в
3 раза?
Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадрата, нужно разделить Р1 на Р;
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.
120 : (- 8 * (- 3) + 12 : (- 3)) - (- 48) : (- 16) = - 9
1) - 8 * (-3) = 24
2) 12 : (-3) = - 4
3) 24 + (- 4) = 20
4) - 120 : 20 = - 6
5) - 48 : (- 16) = 3
5) - 6 - 3 = - 9
- 75 * 4 - 204 : (- 3) + (- 210) : (- 7) = - 202
1) - 75 * 4 = - 300
2) 204 : (- 3) = - 68
3) - 210 : (- 7) = 30
4) - 300 - (- 68) = - 300 + 68 = - 232
5) - 232 + 30 = - 202
- 20,25 : (- 3,6) + 90,72 : (- 4,5) - 7,5 * 3,2 = - 38,535
1) - 20,25 : (- 3,6) = 5,625
2) 90,72 : (- 4,5) = - 20,16
3) 7,5 * 3,2 = 24
4) 5,625 + (- 20,16) = 5,625 - 20,16 = - 14,535
5) - 14,535 - 24 = - 38,535
Задача. Пусть х - цена ткани до подорожания. Процент - это сотая часть числа: 20% = 0,2; 25% = 0,25.
1) х * 0,2 + х = 1,2х - цена ткани после повышения цены на 20%;
2) 1,2х * 0,25 + 1,2х = 1,5х - цена ткани после повышения новой цены на 25%
3) Пропорция: 1 - 100% (первоначальная цена)
1,5 - х (окончательная цена)
х = 1,5 * 100 : 1 = 150%
150% - 100% = 50% - на столько процентов была повышена первоначальная цена.