«Расстояние между городами 564 км. Навстречу друг другу из городов одновременно вышли поезда и встретились через 6 часов. Скорость одного поезда на 10 км больше скорости другого. Чему равна скорость каждого поезда?»
Решение: Пусть х км/ч - скорость первого поезда, а у км /ч – скорость второго поезда. По условию задачи поезда встретились через 6 часов. Тогда, 6х км - пройдёт до встречи первый поезд, 6у км - пройдёт до встречи второй поезд. Их встреча означает, что суммарно они до встречи путь в 564 км, то есть 6х+6у=564 – первое уравнение.
Скорость первого поезда на 10 км/ч больше скорости второго, то есть, разность между скоростями равняется 10. Получим второе уравнение: х-у=10
В итоге получим систему уравнений:
ответ: 52 км/ч, 42 км/ч.
1) х^2 + y^2 = 16
2) х-у=4, отсюда х=4+у
Подстановка в первое:
(4+у) ^2+ y^2=16
Раскрываем скобки:
16+8у+y^2+y^2=16
2y^2+8у=16-16
2y^2=-8у
у=-8/2
у=-4
Вторая подстановка:
х=4+(-4)
х=0
ответ: (0;-4)
Проверяем:
1) 0^2+(-4)^2=16 (верно)
2) 0 - (-4) = 4 (верно)
ЧТД