Для того,чтобы сумма квадратов корней уравнения равнялась какой-либо величине, эти корни должны существовать. Значит, дискриминант нашего уравнения должен быть неотрицательным,т.е (3p-5)^2-4(3p^2-11p-6)>=0. При таких "p" у исходного уравнения найдутся(возможно, совпадающие) корни x1 и x2. Запишем для них теорему Виета: x1+x2=-b/a=5-3p x1*x2=c/a=3p^2-11p-6 Теперь,не вычисляя корней, можно найти сумму их квадратов через "p": x1^2 + x2^2. Выделим полный квадрат: (x1+x2)^2-2x1*x2= (5-3p)^2-2(3p^2-11p-6). По условию, эта сумма квадратов равна 65. Получаем: (5-3p)^2-2(3p^2-11p-6)=65 Решим его: 25-30p+9p^2-6p^2+22p+12-65=0 3p^2-8p-28=0 D=(-8)^2-4*3*(-28)=400 p1=(8-20)/6=-2 p2=(8+20)/6=14/3 Проверим, подставив эти значения "p" в исходное уравнения, чтобы убедиться, что дискриминант неотрицателен. Проверять здесь не буду из-за экономии времени. Все найденные "p" подходят. Теперь найдем корни уравнения: 1)p=-2 x^2-11x+28=0 x1=4; x2=7 2)p=14/3 x^2+9x+8=0 x1=-8; x2=-1 ответ: при p=-2 x1=4, x2=7; при p=14/3 x1=-8, x2=-1.
Во-первых, обозначим стороны прямоугольника: Пускай длина - a, ширина - b. Если к длине a отнять 4, а к ширине b прибавить 7. То получится квадрат. У квадрата все стороны равны! Обозначим стороны данного квадрата: Длина: a - 4 Ширина: b + 7. Ширина равняется длине у квадрата. Значит:
Еще, знаем что площадь квадрата равна 100. То есть:
Создадим систему уравнений из этих сведений:
Выразим из второго уравнения a:
Подставим в первое уравнение:
Сторона b равняется трём. Есть еще один корень у этого уравнения, но его не рассматриваем, получатся отрицательные значение. Так как, сторона квадрата равна b + 7, то сторона будет 3 + 7, а это 10.
Можем проверить, найдём еще сторону прямоугольника a = b + 11 a = 3 + 11 = 14 Подставим в первое уравнение: