Решим задачу с уравнения. Допустим скорость лодок в стоячей воде равняется х к/час. Тогда, скорость лодки, которая плывет по течению равняется (х + 2) км/час, а скорость лодки, которая плывет против течения составляет (х - 2) км/час. За 2,8 часа лодки встретились и преодолели дистанцию в 212,8 км. Составим уравнение: 2,8 × (х + 2) + 2,8 × (х - 2) = 212,8; 2,8х + 5,6 + 2,8х - 5,6 = 212,8; 5,6х = 212,8; х = 212,8 : 5,6; х = 38. Таким образом, скорость лодок в стоячей воде равняется 38 км/час. Определим скорость лодки, которая плывет по течению: 38 + 2 = 40 км/час; Определим скорость лодки, которая плыла против течения: 38 - 2 = 36 км/час. – материал взят с сайта Студворк https://studwork.org/matematika/158158-rasstoyanie-mejdu-dvumya-pristanyami-ravno-2128-km-iz-nih-odnovremenno-navstrechu-drug-drugu-vyshli-dve-lodki
Нам нужно найти при каких значениях а уравнение (а + 4)х = а - 3 не имеет корней.
Давайте сначала выразим из уравнения переменную х через а.
Разделим обе части уравнения на скобку (а + 4):
х = (а - 3)/(а + 4).
Рассмотрим полученное равенство.
В выражении стоящем в правой части равенства есть знак дроби ( иными словами деления).
Нам известно, что на ноль делить нельзя. Найдя те значения а которые обращают знаменатель в ноль и будут ответом на вопрос задания.
а + 4 = 0;
а = - 4.
При а = - 4 знаменатель дроби обращается в 0, следовательно уравнение не имеет корней.
ответ: б = -4.