2.Тираж одной популярной газеты ежемесячно увеличивается на 200 экземпляров.Сколько экземпляров этой газеты будет выпущено за год, если в январе этого года ее тираж составлял 5200 экземпляров?
5200*12+200*11=64 600 выпущено за год
1.Найдите четыре числа, образующих геометрическую прогрессию, третий член которой больше первого на 12, а второй больше от четвертого на 24. bn=b1q*(n-1) b1 b2=b1q b3=b1q² b4=b1q³
Решение y = x³ + 3x² 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 3x² + 6x или f'(x) = 3x*(x + 2) Находим нули функции. Для этого приравниваем производную к нулю 3x*(x + 2) = 0 Откуда: 3x = 0 x₁ = 0 x + 2 = 0 x₂ = - 2 (-∞ ;-2) f'(x) > 0 функция возрастает (-2; 0) f'(x) < 0 функция убывает (0; +∞) f'(x) > 0 функция возрастает В окрестности точки x = - 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = - 2 - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.
sinx=0.25[-1-3]=-1 x=3π/2+2πk k∈Z
sinx=0.25[-1+3]=1/2 x=(-1)ⁿ * π/6+πn n∈Z
8(1-sin²x)+6sinx-3=0
-8sin²x+8+6sinx-3 =-8sin²x+6sinx+5=0
8sin²x-6sinx-5=0 D=36+160=196 √D =14
sinx=1/16[6+14]=20/16 >1
sinx=1/16[6-14]=-1/2 x=(-1)ⁿ⁺¹π/6+πn n∈Z
.